|
|
Ship's Speed, Course and Gyro:
The ship's GPS speed in knots (Speed Over Ground) and GPS
Course in
compass degrees (Course Over Ground) are the one minute averages
from the
GPS (ship P-code GPS as the primary source, the PMEL GPS as the
secondary
source. To make the one minute averages the 2-second recorded
motion
vector was separated into east and north components that were averaged
into one
minute bins. The one minute components were then combined into
the ship
Velocity Vector. The GyroCompass in compass degrees is
the one
minute average heading. The 2-second data was separated into an
east and
north component before averaging and then recombining.
NOTE: The
GPS-Course is the direction the ship is moving. The
GyroCompass is
direction the ships bow is pointing. When the ship is moving at 6
or more
knots they generally are almost the same. Due to water currents,
at slow
speeds there can be quite a difference between the two. When the
ship is
stationary, the two are totally unrelated.
Atmospheric Temperature:
One minute averages in degrees C. There were three possible sources,
the 2 PMEL
rotronics sensors (T1 and T2) and the ship's SCS IMET sensor. The
ship's
IMET sensor was located on the IMET mast at the bow of the ship, the
PMEL
sensors were located at the top of the Aero-phys van. In plotting
the raw
data it was found that T1 and the SCS IMET sensor both generally agreed
within
a fraction of a degree C. T2 was generally about one degree
warmer than
T1 or SCS IMET. The IMET sensor being located at the bow had less
warming
from the daytime heating of the ship deck, (and the data record did
show that
IMET was cooler than T1 during the afternoon, when deck heating was a
max).
Therefore, the SCS IMET sensor was used as the primary source and for
the few
times that data were missing from SCS, the PMEL-T1 sensor was used.
Relative humidity:
One minute averages in units of %. The RH sensors were
problematic.
The two PMEL rotronics sensors (RH1, and RH2) agreed very well for the
first 48
hours of the cruise, and then output from RH1 jumped to 120% RH, and
stayed
over 100% for much of the time. The output from the SCS RH sensor
appeared 'stuck' and flat-lined at about 96% for much of the
time.
Because only the PMEL RH2 sensor appeared to give 'reasonable' data,
RH2 was
used as the data source for all of the NEAQS2004 record.
Barometric Pressure:
One minute averages in units of mb. There were two sources of raw
data, the PMEL (Qualimetrics sensor) and the SCS digital (Vaisala)
sensor. There was one other data source, the Weather Service
certified
aneroid barometer, but this 'bridge barometer' cannot be electronically
recorded. The PMEL and the SCS barometer data tracked each other
very
well but the PMEL barometer had a 'drift' in that the two agreed very
well at
the start of the cruise, but by the start of leg 2 they differed by 8
mb.
In seven readings over the course of the cruise the SCS barometer
agreed within
1 mb of the 'bridge barometer'. Therefore the SCS barometer
data
was used for this record. For the few hours at the start of leg 1
when
there was no SCS data, the PMEL barometer was used as they both agreed
very
well at this time. For the period at the end of leg 1 and the
start of
leg 2 when the SCS system was off, a calibration factor of 8.29 mb was
added to
the PMEL barometer signal and used for this record.
Insolation:
One minute averages in units of watts per square meter. Total solar
radiation
was measured with an Epply Black and White Pyranometer (horizontal
surface
receiver -180, model 8-48, serial number 12946) and an Epply precision
pyranometer (horizontal surface receiver -180, twin hemispheres, model
PSP,
serial number 133035F3) that were mounted on the top of AERO van. Both
instruments were calibrated by The Epply Laboratory on October 11,
1994. There were times when the sampling mast shaded one or both
sensors. There were also
times when the ship's mast/bridge shaded the sensors. The shaded data
have not
been edited out of the 1 minute data record. The data reported here are
from
the model 8-48, serial number 12946 radiometer and are in watts per
square
meter and are the average value over the 1 minute sampling period.
Relative Wind
The primary source for the relative wind data was the PMEL "Skyvane"
anemometer that was located at the top of the aerosol sampling mast.
For
periods of missing data from the PMEL data source the ships IMET SCS
wind
sensor was used. We assume that the relative wind information is
primarily
used to determine periods of ship contamination, thus we are using the
anemometer that is closest to the sample inlet. This anemometer also
was used
as an input to the algorithm that turned off the sample pumps during
periods of
ship contamination.)
The one minute average relative wind speed and direction data were separated into orthogonal components of "keel" and "beam". These components were averaged into 1 minute averages, and then recombined to relative wind vectors. Wind speed is reported meters per second and wind direction is in degrees with -90 being wind approaching the ship on the port beam, 0 degrees being wind approaching the ship directly on the bow, and +90 degrees being wind approaching the ship on the starboard beam.
Wind Components/ True Wind Speed/ True Wind Direction:
True wind speed and direction were calculated from measurements
obtained with
the Ships IMET wind sensor. This sensor was mounted 14 meters above the
sea
surface on the ship's meteorological sampling mast at the bow and
should be
less affected by bending of streamlines as the air moves over the ship.
(The
PMEL “Skyvane” was on the top of the Aero-Van and in the ‘perturbed
airflow’.)
The true North and East components of the wind vector from the 2 second
SCS data
were calculated and then averaged into 1 minute intervals in m/s. The
true wind
vector was calculated from these components and is given as wind speed
in m/s
and wind direction in compass degrees. The WindU and WindV are
the east and
north components of the wind vector (in m/s).
Rainfall Rate:
The rainfall rate was measured with a Scientific Technology Inc.
ORG-100
Optical Precipitation Intensity Sensor. The instrument was mounted on
the
railing of Aero van. The dynamic range of the sensor is 0.5 to 1600
mm/h.
Spikes in the signal may be associated with sea spray and/or fog. The
data are
reported in units of mm/hr.
PMEL/UW CN and UFCN measurements:
Aerosol particles were sampled at 18 m above sea level through a heated mast. The mast extended 5 m above and forward of the aerosol measurement container. The inlet was a rotating cone-shaped nozzle that was automatically positioned into the relative wind. Air was pulled through this 5 cm diameter inlet nozzle at 1 m3 min-1 and down the 20 cm inner diameter mast. The lowest 1.5 m of the mast was heated to reduce the relative humidity (RH) to a value of not less than 60% and partially dry the aerosol. Twenty one 1.6 cm inner diameter conductive tubes extending into this heated zone were used to subsample the main air flow for the various aerosol instruments at flows of 30 l min-1.
One of the twenty one 1.6 cm diameter tubes was used to supply ambient air to TSI 3010 and TSI 3025A particle counters. A separate 1/4" line was used to supply air from the top of the mast directly to a TSI 3760 particle counter. The 3760, 3010 and 3025 measure all particles larger than roughly 13, 12 and 3 nm respectively. The counts from the three detectors are referred to here as CN>13 (TSI3760), CN>12 (TSI3010), and CN>3 (TSI3025). The total particle counts from each instrument were recorded each minute. The data were filtered to eliminate periods of calibration and instrument malfunction and periods of ship contamination (based on relative wind and high CN counts). The value of -999 was assigned to any one minute period without data.
SO2 Measurements aboard
Ronald H. Brown during NEAQS/ITCT/ICARTT 2004
Inlet and Instrument :
Air was pulled from 18 m above sea level down the 20 cm ID
powder-coated aluminum aerosol sampling mast (6 m) at approximately 1
m3min-1. At the base of the sampling mast a 0.5 Lmin-1 flow was pulled
through a 0.32 cm ID, 1m long Teflon tube, a Millipore Fluoropore
filter (1.0-um pore size) housed in a Teflon filter holder, a Perma
Pure Inc. Nafion Drier (MD-070, stainless steel, 61 cm long) and then
through 2 m of Telfon tubing to the Thermo Environmental Instruments
Model 43C Trace Level Pulsed Fluorescence Analyzer. The initial 1 m of
tubing, filter and drier we located in the humidity controlled (60%)
chamber at the base of the mast. Dry zero air (scrubbed with a charcoal
trap) was run through the outside of the Nafion Drier at 1 Lmin-1. The
analyzer was run with two channels (0-10 ppb full scale and 0-100 ppb
full scale) and a 20 sec averaging time. Data were recorded every
minute.
Standardization:
Zero air was introduced into the sample line upstream of the Fluoropore
filter for 10 minutes every 6 hours to establish a zero baseline. An
SO2 standard was generated with a permeation tube held at 40C. The flow
over the permeation tube, diluted to 6.2 ppb, was introduced into the
sample line upstream of the Fluoropore filter for 10 minutes every 24
hours. The limit of detection for the 1 min data, defined as 2 times
the standard deviation of the signal during the zero periods, was 100
ppt. Uncertainties in the concentrations based on the permeation tube
weight and dilution flows are <5%.
Ozone:
In one minute averages in units of ppb. Air was sampled from 18 m above
sea
level down the 20 cm ID powder-coated aluminum aerosol sampling mast (6
m) at
approximately 1 m3min-1. At the base of the
sampling mast
a 1 Lmin-1 flow was pulled through a 0.32 cm ID, 2m long
Teflon tube
into a TECO 49 ozone analyzer and a Dasibi 1008 AH ozone
analyzer. The TECO
instrument has been calibrated to a NIST traceable analyzer at
NOAA-CMDL. At
the end of leg one the TECO 49 instrument developed a leak and
failed. It was
fixed several days into leg 2. For the first 10 days of leg one
the Dasibi
instrument was ‘calibrated’ to the TECO instrument. The
correction factor was
then applied to the entire Dasibi record. Data from the two
instruments were
then averaged together (except for the days that only the Dasibi was
running).. A small portion of
the data have been deleted (consisting mostly of times that the inlet
air was
passed through a zero filter - usually when the relative wind was well
behind
the beam of the ship).
Sea Surface Temperature and Salinity:
Sea Surface Temperature (SST) in degrees C and Salinity in PSU
were measured
with the Ship's Thermosalinograph. The intake depth was at 5.6 meters.
Seawater DMS
Seawater enters the ship at the bow, 5.6 m below the ship waterline, and is pumped to the ship laboratory at approximately 30 lpm (water residence time within the ship is < 5 min). Every 30 minutes a 5 ml water sample is valved from the ship water line directly into a Teflon gas stripper. The sample is purged with hydrogen at 80 ml/min for 5 min. DMS and other sulfur gases in the hydrogen purge gas are collected on a Tenax filled trap, held at -5 deg C. During the sample trapping period, 6.2 pmoles of methylethyl sulfide (MES) are valved into the hydrogen stream as an internal standard. At the end of the sampling/purge period the trap is rapidly heated to +120 deg C and the sulfur gases are desorbed from the trap, separated on a DB-1 megabore fused silica column held at 70 deg C, and quantified with a sulfur chemiluminesence detector. Between each water sample the system analyzes either a DMS standard or a system blank. The system is calibrated using gravimetrically calibrated DMS and MES permeation tubes. The precision of the analysis has been shown to be ± 2% based on replicate analysis of a single water sample at 3.6 nM DMS. The automated DMS system is described in greater detail in Bates et.al., (J. Geophys. Res., 103, 16369-16383, 1998; Tellus, 52B, 258-272, 2000). The major improvements since these papers are a new automation-data system and a more reliable cold trap consisting of a electically heated stainless steel tube embeded in an aluminum block that is cooled to -5 deg C with a thermoelectric cooling chip.
Radon:
The PMEL radon instrument is a "dual flow loop, two filtered radon
detector". The general features of the instrument are described in Whittlestone
and Zahorowski, Baseline radon detectors for shipboard use: Development
and deployment in the First Aerosol Characterization Experiment (ACE1),
J. Geophys. Res., 103, 16,743-16,751, 1998. The instrument response is
due to radon gas, not radon daughters (all of the existing radon daughters
are filtered out before entering the decay/counting tank). The instrument
registers the total number of decay counts per 30 minute interval on a
filter arising from the decay of radon in the tank. The time given in the
data file is the time of the start of the counting interval. As the volume
of the decay/counting tank was 905 l and the sample flow rate into and
out of the tank was typically 70 l/min, the response time of the radon
instrument was about 13 minutes. The radon detector was standardized in
Portsmouth at the beginning of the cruise
using radon emitted from a known source.
Aerosol Organic and Elemental Carbon
Information about the OCEC sampling and data is available in a separate
PDF document.
Aerosol Chemistry data -- NOAA PMEL PILS Chemistry Data
Contact person: Trish Quinn, Patricia.K.Quinn@noaa.gov
See Weber etal. (2001) and Orsini et al. (2003) for a description of the PILS (Particle-Into-Liquid-Sampler). The 15 lpm version was used in this experiment. The common aerosol inlet (heated to maintain the sample air at 55 +/- 5% RH) was used to deliver aerosol to the PILS. A Berner-type impactor with a 50% aerodynamic cutoff diameter of 1.1 um was upstream of the PILS and sampled air at 55% RH. In order to maintain a 1.1 um cut off diameter, the impactor must have 30 slpm of flow at all times. The PILS itself runs at 15 slpm with the flow controlled by a critical orifice. To maintain 30 slpm through the impactor, a make up flow through a bypass line was added of 15 slpm. Two denuders were located in series after the impactor. These were 1) a URG denuder coated with sodium carbonate for the removal of gas phase acids, and 2) a URG denuder coated with citric acid to remove gas phase bases. Liquid sample flow from the PILS went simultaneously to a cation IC and an anion IC (Metrohm compact 761 ICs).
Cation analysis: a Metrohm Peak C2-100 column for Na, NH4, K, Mg, Ca. Eluent was 2.5 mM HNO3, 10% ACN, and 1.5 mM dipicolinic acid with no suppression. Flow rate was 1.1 ml/min. Anion analysis: a Methrohm Peak ASupp5-100 for Cl, NO3, SO4.
Anion eluent is 5 mM Na2CO3/2 mM NaHCO3 with Methrohm's packed bed suppressor. Flow rate is 1.25 ml/min. Samples were collected and analyzed every 5 min.
Ion concentrations are reported in ug/m3 at STP. PILS concentrations were compared to the submicron stages of a 2 and 7 stage impactor (Impactors 1 and 9, respectively). PILS concentrations were corrected based on the slope of the Impactor vs. the PILS for NH4+ and SO4=. The average of the slopes for impactor 1 and 9 was used. The NH4+ slope was applied to all cations and the SO4= slope was applied to all anions. Hence, cation concentrations were divided by 0.785 for leg 1 and 0.855 for leg 2. Anion concentrations were divided by 0.785 for leg 1 and 0.685 for leg 2. The reduced collection efficiency for the PILS appears to be due to incomplete filling of the sample loops. (This conclusion is based on a series of tests conducted post-cruise in the van park).
Weber, R.J., D. Orsini, Y. Daun, Y.-N. Lee, P.J. Klotz, and F. Brechtel, A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition, Aerosol. Sci. Technol., 35, 718-727, 2001.
Orisini,
D.A. et al., Atmos. Environ., 37, 1243 - 1259, 2003.
PMEL Aerosol Optical Depth Data
Contact person: Trish Quinn, patricia.k.quinn@noaa.gov
Three 5-channel handheld Microtops sunphotometer (Solar Light Co.) were
used. Two units (SN 4080 and 3803) have wavelengths of 380, 440, 500,
675, and 870 nm). The third unit (SN 5355) has wavelengths of 340, 380,
500, 675, and 870 nm). The full angular field of view for the
Microtops is 2.5 deg. The instruments have built in pressure and
temperature sensors and were operated with a GPS connection to obtain
position and time of the measurements. Raw signal voltages were
converted to aerosol optical depths by correcting for Rayleigh
scattering [Penndorf, 1957], ozone optical depth, and an air mass that
accounts for the Earth's curvature [Kasten and Young, 1989]. Ozone
column amounts used to calculate the ozone optical depth were obtained
from TOMS data as a daily average throughout the cruise for the
latitude and longitude of Boston. Units 4080 and 5355 were calibrated
at MLO in June, 2004, one month prior to the start of the cruise. Unit
3803 was calibrated at the factory in January, 2004. Calibrations were
done using a Langley plot approach [Shaw, 1983]. Measurements on the
ship followed the protocol of Knobelspiesse et al. [2003]. The scan
length was set to 20 so that 20 measurements are obtained during each
"shot". The largest voltage of the 20 measurements is recorded which
corresponds to the lowest AOD. This approach helps to eliminate
erroneous measurements that result from pointing errors on a moving
ship. After the experiment, a post processing algorithm was applied.
This algoritm calculates a coefficient of variation for each
measurement equal to the sample standard deviation divided by the
sample mean. If the CoV > than 0.05, the highest AOD is removed and
CoV is recalculated. This procedure is repeated until all points
"pass". All units were compared at each common wavlength. For 380 nm,
the slope was 0.98 and r^2 was 0.99. For 500 nm, the slope was 0.98 and
r^2 was 0.98. For 675 nm, the slope was 0.95 to 0.98 and the r^2 was
0.96. For 870, the slope was 0.92 and the r^2 was 0.90. For 440 nm the
slope was 0.99 and r^2 was 0.99. The uncertainty of the Microtops is
esimated to be +/- 0.015 AOD.
Contact persons: Trish Quinn, patricia.k.quinn@noaa.gov; Kristen
Schulz, Kristen.schulz@noaa.gov
Two-stage multi-jet cascade impactors (Berner et al., 1979) sampling air at 55 ± 5% RH were used to determine the sub- and supermicron concentrations of Cl-, NO3-, SO4=, methanesulfonate (MSA-), Na+, NH4+, K+, Mg+2, and Ca+2. Sampling periods ranged from 4 to 6 hours. The RH of the sampled air stream was measured a few inches upstream from the impactor. The 50% aerodynamic cutoff diameters, D50,aero, were 1.1 and 10 um. Submicron refers to particles with Daero < 1.1 um at 55% RH and supermicron refers to particles with 1.1 um < Daero < 10 um at 55% RH.
The impaction stage at the inlet of the impactor was coated with silicone grease to prevent the bounce of larger particles onto the downstream stages. Tedlar films were used as the collection substrate in the impaction stage and a Millipore Fluoropore filter (1.0-um pore size) was used for the backup filter. Films were cleaned in an ultrasonic bath in 10% H2O2 for 30 min, rinsed in distilled, deionized water, and dried in an NH3- and SO2-free glove box. Filters and films were wetted with 1 mL of spectral grade methanol. An additional 5 mLs of distilled deionized water were added to the solution and the substrates were extracted by sonicating for 30 min. The extracts were analyzed by ion chromatography [Quinn et al., 1998]. All handling of the substrates was done in the glove box. Blank levels were determined by loading an impactor with substrates but not drawing any air through it.
Non-sea salt sulfate concentrations were calculated from Na+ concentrations and the ratio of sulfate to sodium in seawater. Concentrations are reported as ug/m3 at STP (25C and 1 atm).
Berner et al., Sci. Total Environ., 13,
245 - 261, 1979.
Quinn et al., J. Geophys. Res., 105, 6785 - 6805, 2000.
Contact person: Trish Quinn, patricia.k.quinn@noaa.gov
Two-stage multi-jet cascade impactors (Berner et al., 1979) sampling air at 55 ± 5% RH were used to determine sub- and supermicron aerosol mass concentrations. The RH of the sampled air stream was measured a few inches upstream from the impactor. The 50% aerodynamic cutoff diameters, D50,aero, were 1.1 and 10 um. Submicron refers to particles with Daero < 1.1 um at 55% RH and supermicron refers to particles with 1.1 um < Daero < 10 um at 55% RH.
The impaction stage at the inlet of the impactor was coated with silicone grease to prevent the bounce of larger particles onto the downstream stages. Tedlar films were used as the collection substrate in the impaction stage and a Millipore Fluoropore filter (1.0-um pore size) was used for the backup filter. Films were cleaned in an ultrasonic bath in 10% H2O2 for 30 min, rinsed in distilled, deionized water, and dried in an NH3- and SO2-free glove box.
Films and filters were weighed at PMEL with a Cahn Model 29 and Mettler UMT2 microbalance, respectively. The balances are housed in a glove box kept at a humidity of 33 ± 2%. The resulting mass concentrations from the gravimetric analysis include the water mass that is associated with the aerosol at 33% RH.
The glove box was continually purged with room air that had passed through a scrubber of activated charcoal, potassium carbonate, and citric acid to remove gas phase organics, acids, and ammonia. Static charging, which can result in balance instabilities, was minimized by coating the walls of the glove box with a static dissipative polymer (Tech Spray, Inc.), placing an anti-static mat on the glove box floor, using anti-static gloves while handling the substrates, and exposing the substrates to a 210Po source to dissipate any charge that had built up on the substrates. Before and after sample collection, substrates were stored double-bagged with the outer bag containing citric acid to prevent absorption of gas phase ammonia. More details of the weighing procedure can be found in Quinn and Coffman [1998].
Concentrations are reported as ug/m3 at STP (25C and 1 atm).
Berner et al., Sci. Total Environ., 13, 245 - 261, 1979.
Quinn et al., J. Geophys. Res., 105, 6785 - 6805, 2000.
U.S.Dept of Commerce / NOAA / OAR / PMEL / Atmospheric Chemistry