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A B S T R A C T   

The oceans contribute to aerosol particles in the atmosphere through two different physical mechanisms: first by 
the production of sea spray aerosol (SSA), and second by emitting gases that condense to produce secondary 
marine aerosol (SMA). These aerosol emissions include three types of chemical compounds: salt particles account 
for >90% of the mass, most of which is >1 μm dry diameter; sulfate particles are mostly <0.5 μm, typically 
constituting most of the number and the largest impacts on clouds; organic components include the greatest 
variety of compounds and the most uncertain effects on clouds. Most SSA particles are expected to form from 
bubbles as film drops that are <1 μm dry diameter and form from flapping bursting bubbles, although >1 μm film 
drops can form by ligament fragmentation. SMA particles include contributions from marine biogenic gas 
emissions, including dimethylsulfide (DMS), isoprene, amines, and monoterpenes. The role of particles from the 
ocean in the atmosphere varies by region and by season, but since atmospheric concentrations of ocean-derived 
<1 μm particles are typically much smaller than the concentrations of their continental counterparts, they have 
the largest impacts on climate in regions where continental sources are limited. Most efforts to quantify global 
SSA and SMA emissions rely on global models, where representations of marine aerosol sources are constrained 
by a small number of field measurements. Satellite-based retrievals of coarse and marine aerosol optical depth 
provide near global coverage that has been linked to coincident wind speed, whitecaps, and biological pro-
ductivity for >1 μm particles. The current best estimate of SSA flux of 5000 Tg/yr can be used to calculate SSA- 
related carbon flux as 35 TgC/yr, by approximating <1 μm SSA particles as 10% of SSA flux with 7% organic 
carbon and > 1 μm particles as 90% of SSA flux with no organic carbon. SMA is estimated to contribute 0.6 TgC/ 
yr as DMS, 0.6 TgC/yr as amines, and an additional trace amount from isoprene and monoterpenes for a total of 
<2 TgC/yr. Because of the limited availability of observations to constrain SSA and SMA global estimates, 
oceanic fluxes to aerosol and aerosol precursors could vary by over two orders of magnitude. Key open questions 
that require additional observational constraints include the variability in >1 μm SSA mass size distributions, the 
relative contributions of SSA and SMA to number concentrations of particles <0.5 μm, and the regional and 
seasonal factors that may control these <0.5 μm particle concentrations.   

1. Introduction: ocean sources of atmospheric aerosol particles 

Oceans cover two-thirds of the Earth, and they produce two sources 
of aerosol particles – one directly as particles (primary) and the other as 
gases that later form particles (secondary). These naturally occurring 
sources are produced from most of the area covered by the world oceans, 
but quantifying the contributions of these sources is a complex challenge 
limited by instrument and simulation capabilities, as well as by logistical 
obstacles for open-ocean measurements. The direct or primary source of 
particles to the atmosphere is that of sea spray aerosol (SSA), the 

particles formed from the bursting of bubbles generated by wind-driven 
breaking waves (Gong, 2003; Monahan, 1968). The indirect source of 
particles is the emission of gases from the ocean that can condense to 
particles after they are in the atmosphere, which are considered “sec-
ondary” marine aerosol (SMA) (Gantt et al., 2010; Meskhidze et al., 
2010; Shaw, 1987; Shaw et al., 2010a). SSA consists largely of sea salts 
from the ocean but also includes a contribution of organic components 
that are produced by the metabolism of biological organisms in the 
ocean. These ocean ecosystems also produce and release organic gases 
that can form SMA. 
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This review provides an update on the understanding of SSA and 
SMA, building from prior reviews (de Leeuw et al., 2011; Gantt and 
Meskhidze, 2013; Lewis and Schwartz, 2004; O'Dowd and De Leeuw, 
2007; Quinn et al., 2015; Shaw et al., 2010a). The objective is to sum-
marize the findings most relevant to the physical drivers of marine 
aerosol sources and impacts, focusing on the fluxes of SSA and SMA. We 
consider the regional and seasonal differences that may influence SSA 
and SMA, including the role of ocean biota, and compile estimates of 
their global fluxes. Finally, we discuss the most important open ques-
tions for which answers are needed to improve our understanding of the 
role of ocean fluxes of aerosol in contributing to Earth's climate. 

2. SSA fluxes 

Aerosol particle fluxes from the ocean known as “sea spray aerosol” 
(SSA) are composed of inorganic sea salts, including mostly NaCl and 
trace amounts of other salts, and organic components (Gantt and Mes-
khidze, 2013; Russell et al., 2010). The flux of these particles has been 
characterized indirectly by measurements of particle concentrations in 
marine areas with minimal continental contributions, and have been 
shown to increase with wind speed (Monahan, 1968; Monahan et al., 
1983). Laboratory measurements have quantified the links between 
bubbling of trapped air and particle production, showing that the flux 
may depend not only on the wind-speed-driven entrapment of air but 
also on the conditions of the sea surface and its composition (Blanchard, 
1989; Martensson et al., 2003; Sellegri et al., 2006a). The understanding 
of the SSA number size distribution is well developed for particles >1 μm 
but quite limited for particles <0.5 μm, which has substantial implica-
tions for SSA contributions to CCN (O'Dowd et al., 1999a; O'Dowd et al., 
1999b). 

2.1. Modes of SSA production 

The modes of SSA have been associated with different processes 
involved in bubble bursting, with jet drops ejected from bubbles often 
attributed as the producers of particles 1–10 μm dry diameter, film drops 
from bubble cap fragmentation as the producers of smaller particles <1 
μm dry diameter (Woolf et al., 1987), and spume drops from wave 
tearing as producers of particles at 100 μm formation diameter 
(Anguelova et al., 1999; Fairall et al., 2009; Monahan et al., 2017; 
Veron, 2015; Wu, 1993). The formation processes for film and jet drops 
are illustrated in Fig. 1, and the size ranges of film, jet, and spume 
particles are illustrated in Fig. 2. The bubbles formed by wave-breaking 
in the ocean span a range of sizes from <50 μm radius to >10 mm radius 
(Fig. 3), but there are few measurements characterizing bubble pro-
duction in the open ocean (Deane and Stokes, 2002). Most of the 
quantitative relationships between bubble production and particle size 

distributions are based largely on laboratory rather than ocean condi-
tions (Lewis and Schwartz, 2004). The scarcity of these measurements 
means that extrapolations to global and annual SSA are highly uncer-
tain. This uncertainty means that current models use parameterizations 
rather than bottom-up calculations of sea spray particle production. 

For this review as for most of the literature, bubble sizes are reported 
as observed geometric radius. Airborne particle sizes, in particular those 
related to chemical composition, typically are referenced to dry diam-
eter to provide a more standard and reproducible metric for quantifi-
cation. Aerosol particle diameter may be measured by mobility, 
aerodynamic, optical, or geometric properties, and here the diameter 
given is most often calculated as equivalent to geometric for spherical 
particles. Exceptions, as in Fig. 2, are noted. 

Bubbles larger than 1 mm radius have been observed to produce film 
drops with a maximum dry diameter given by the area and thickness of 
the bubble cap (Lhuissier and Villermaux, 2012) and apparent minimum 
diameters as small as 0.01 μm (Martensson et al., 2003). Photographic 
evidence indicated that ligaments form after the inertial destabilization 
of the rim enclosing the initial rupture in the bubble, and the elongation 
of those ligaments leads to the formation of droplets <10 μm wet 
diameter (Lhuissier and Villermaux, 2012; Spiel, 1998). Ligament- 
mediated (also called centripetal) fragmentation of the bubble film is 
thought to be relatively independent of bubble size (Lhuissier and Vil-
lermaux, 2012), producing a characteristic gamma distribution of drops 
(Spiel, 1998). The wet drops produced from bursting bubbles of radius 
12 mm were measured from 5 to 500 μm (Lhuissier and Villermaux, 
2012), which is approximately equivalent to dry diameters ranging from 
1 to 100 μm (Fig. 4). High speed photographic observations account for 
the formation of particles <0.1 μm by capturing the role of flapping 
bubble films for bubbles <2 mm (Jiang et al., 2022b). The flapping of 
the film begins as the bubble film recedes from the initial hole at the foot 
of the bubble cap, resulting in film fragmentation and drop formation. 
The flapping motion of the bubble film results from the thinness of the 
films for small bubbles and has been proposed to control the size of 
particles produced, with particles as small as 0.04 μm from saltwater 
bubbles of radius 73 μm (Gañán-Calvo, 2022; Jiang et al., 2022a; Jiang 
et al., 2022b). 

Film drops have been thought to represent the majority (60–80%) of 
the particles produced in wave breaking (Veron, 2015). Laboratory 
measurements with controlled bubbling show production of many <1 
μm particles from bubble bursting events (Martensson et al., 2003). 
Those laboratory experiments included a range of bubble sizes, pre-
cluding the use of these experiments to establish a quantitative rela-
tionship between particle production and bubble film fragmentation. 
Recent evidence shows that bubbles smaller than 10–20 μm radius 
produce particles with dry diameters 0.5–1 μm, suggesting that jet drops 
may also play a role in <1 μm particle production (Wang et al., 2017), 

Fig. 1. The multiscale approach discussed in 
this review to model mass exchange due to 
breaking waves, drops, and bubbles. At 
moderate to high wind speeds, breaking 
waves form whitecaps on the ocean surface. 
(a) The breaking statistics can be described 
by the length distribution Λ(c). (c) of 
breaking crests moving at speed c, typically 
from 1 to 10 m s− 1. (b) Each breaker’s dy-
namics is assumed to be self-similar and is 
described by its speed c, leading to scaling 
models for the associated energy dissipation, 
air entrainment, and bubble statistics. At the 
smallest scales, bubbles with sizes ranging 
from ~1 μm to ~10 mm (c,d) burst at the 
surface to produce liquid sea sprays via (c) 
film and (d) jet drops, with sizes ranging 
from ~0.1 μm to ~1 mm, and (e) exchange 

gas in the turbulent upper ocean. Reproduced from (Deike, 2022).   
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even though there are not yet open-ocean photographic measurements 
of bubbles smaller than 50 μm radius (Deane and Stokes, 2002). Acoustic 
measurements of more complete bubble sizes have been captured in the 
open ocean, providing evidence of large numbers of particles as small as 
10–20 μm radius (Medwin, 1977; Medwin and Breitz, 1989; Vagle and 
Farmer, 1998). Smaller bubbles have been measured in tanks with 
plunging water (Stokes et al., 2016; Stokes et al., 2013), with particles 
from jet drops with dry diameters 0.5–1 μm accounting for 20–40% of 
<1 μm particle number concentrations and the remainder being film 
drops with dry diameters 0.04–0.4 μm (Wang et al., 2017). 

Unlike film drops, jet drops tend to form particles that are deter-
mined by the bubble size (Blanchard, 1989; Wang et al., 2017; Wu, 
2002). The “10% rule” for jet drops predicts jet drop dry diameter to be 
5% of the bubble radius, and observations typically find 1–3 jet drops 
are produced per bubble (Veron, 2015; Wang et al., 2017). Contami-
nation from surfactants has been shown to change the distribution of 
surface bubbles, thereby changing the production of jet drops (Neel 
et al., 2022). Interestingly, the mean size for film drops has been shown 
to be a function of the bubble radius and the ratio of the density of the 
bubble film to the enclosed gas, making its size dependent on the surface 
water composition and temperature (Jiang et al., 2022b). Interactions of 
multiple bubbles may also play a role in changing the production of 
particles, in ways not represented by single-bubble experiments (Bird 
et al., 2010). An upper limit on film drop size can be calculated from the 
bubble cap volume assuming one film drop per bubble, but larger pro-
duction is expected and broad size distributions have been observed 
(Martensson et al., 2003). Consequently, there are a wide range of 
particle production functions (Fig. 5) that may reflect the role of envi-
ronmental conditions on bubble bursting. Several studies have reported 
a variety of dependences of SSA production on ocean and atmospheric 
parameters (Table 1). One notable similarity across laboratory- 
generated size distributions (Martensson et al., 2003), coastal 

Fig. 2. Terminal fall velocity of a water droplet in quiescent air at ambient temperature and pressure. The gray line shows the Stokes solution. Additional axes shown 
are the particle Reynolds number, Rep, and drag coefficient, CDp, as well as the particle inertial relaxation time. R0 is the radius at formation and R80 is the radius at 
80% relative humidity. Also shown is the size range for the film, jet, and spume drops. Reproduced from (Veron, 2015). 

Fig. 3. The average bubble size spectrum estimated from 14 breaking events 
during their acoustic phase. Two camera magnifications were used and the 
results superimposed to obtain the slightly greater than two decades of bubble 
radii observed. The vertical scale is number of bubbles per m3 in a bin radius 1 
μm wide. Vertical bars show +/− one standard deviation. The size distribution 
shows a marked change in slope at a radius that we are identifying as the Hinze 
scale. Bubbles larger and smaller than this scale respectively vary as (radius)-10/ 

3 and (radius)-3/2 denoted by β and α. Inset, the bubble size distribution at the 
beginning of the quiescent phase (crosses) and 1.5 s into the quiescent phase 
(open circles). Both slopes of the bubble spectrum have increased noticeably 
during this time interval. This rapid evolution becomes important when inter-
preting size distributions collected during the plume quiescent phase. Repro-
duced from (Deane and Stokes, 2002). 
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observations of vertical differences in concentrations (Clarke et al., 
2003; Clarke et al., 2006), and shipboard bubbling proxies (Keene et al., 
2017) is the presence of a particle mode < 0.1 μm dry diameter. There 
are not yet direct measurements of <0.1 μm SSA flux in open-ocean 
conditions because of the lack of instrumentation that are chemically 
specific for sea salt, quantitative for sea salt mass concentration, and 
sufficiently resolved for sizes <0.1 μm at time resolutions of hours or 
less. The impacts of ocean (or laboratory) conditions on the bubble 
bursting process likely explain the variability between proposed sea 
spray production functions, which have been derived from laboratory 
generation of SSA (Fig. 5). 

Spume drops are the largest and shortest-lived contributors to 
aerosol particles (Fig. 2), with sizes extending from 30 to 4000 μm 
diameter (Erinin et al., 2022). Given dry diameters >20 μm, their fall 
velocity often exceeds 0.1 m s− 1 making it unlikely for them to persist in 

the atmosphere. In addition, most chemical and physical measurements 
of aerosol particles are limited to diameters <10 μm because of the high 
loss rates of larger particles in instrumentation, as discussed in Section 
2.2.1. For these reasons, this review will focus on film and jet drops. 

2.2. Approaches to quantifying SSA size distributions 

Direct measurements of SSA fluxes are generally not available for the 
<1 μm and > 1 μm size distributions over most of the world oceans 
(Markuszewski et al., 2018; Norris et al., 2008), likely because of the 
combined challenges of designing instruments to measure sea salt 
components quantitatively at high time resolution and the low and 
dispersed ambient net flux rates. Instead, three complementary ap-
proaches have been used to identify the mass and number contributions 
of SSA particles to open-ocean and coastal aerosol. The first and most 

Fig. 4. Summary of relationships identified 
between bubble radius, jet drop dry diam-
eter, and film drop dry diameter, with 
selected references included (Blanchard, 
1989; Jiang et al., 2022b; Lhuissier and Vil-
lermaux, 2012; Spiel, 1998; Veron, 2015; 
Wang et al., 2017; Wu, 2002). Connecting 
lines are approximate representations of the 
size ranges from the references cited. For 
film drops, the different size regimes for 
flapping bursting and ligament fragmenta-
tion (centripetal) processes are noted (Jiang 
et al., 2022b). Spume drop production is not 
included. The size ranges indicated are on 
different scales to show relevant ranges.   

Fig. 5. Parameterizations of size-dependent SSA 
production flux, evaluated for wind speed U10 = 8 m 
s− 1 (or U22 = 8 m s− 1 for Geever et al. (2005)). Also 
shown are central values (curves) and associated un-
certainty ranges (bands) from review of Lewis and 
Schwartz (2004), which denote subjective estimates 
by those investigators based on the statistical wet 
deposition method (green), the steady state deposi-
tion method (blue), and taking into account all 
available methods (gray); no estimate was provided 
for r80 < 0.1 μm. Lower axis denotes radius at 80% 
relative humidity, r80, except for formulations of 
Nilsson et al. (2001), Martensson et al. (2003), and 
Clarke et al. (2006), which are in terms of dry particle 
diameter, dp, approximately equal to r80 and those of 
Geever et al. (2005), Petelski and Piskozub (2006) 
(dry deposition method), and Norris et al. (2008) 
which are in terms of ambient radius, ramb. Formu-
lation of Petelski and Piskozub (2006) by the dry 
deposition method. Formulations of Tyree et al. 
(2007) are for artificial seawater of salinity 33 at the 
two specified bubble volume fluxes. Formulations of 
Nilsson et al. (2001) and Geever et al. (2005) of 
particle number production flux without size resolu-
tion are plotted arbitrarily as if the flux is indepen-
dent of ramb over the size ranges indicated to yield the 
measured number flux as an integral over that range. 
Note that the different diameters indicated on the 
horizontal axis represent different measurement con-

ditions that limit direct comparisons of some measurements. Reproduced from (de Leeuw et al., 2011). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)   
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chemically specific is size-resolved measurements of Na and Cl compo-
sition of particles, which can then be scaled to estimate inorganic “sea 
salt” (Quinn et al., 2000; Russell and Singh, 2006). The second is to infer 
the sea salt concentration based on its characteristic contribution to the 
size distribution and correlation to wind speed (Dedrick et al., 2022; 
Modini et al., 2015; Quinn et al., 2017b; Saliba et al., 2019). The third is 
to associate measured physical properties (such as volatility or hygro-
scopicity) of the size distribution with sea salt composition (Clarke et al., 
2003; Clarke et al., 2006; Xu et al., 2022; Xu et al., 2021). The three 
methods vary in their uncertainty for different size ranges, their accu-
racy for number or mass, their time resolution, their labor intensiveness 
and consistency across groups, their reliance on assumptions that may 
be region-specific, and their ability to resolve non-salt contributions. 

2.2.1. Chemical mass measurements 
The most comprehensive and consistent set of size-resolved chemi-

cally-specific open-ocean sea salt measurements are available from a 
series of cruises by researchers at NOAA Pacific Marine Environmental 
Laboratory (PMEL) (https://saga.pmel.noaa.gov/data/). Size-resolved 
aerosol was collected and analyzed for Na+ and Cl− with analysis by 
ion chromatography on more than a dozen open-ocean cruises for 
typical sampling times of one day at heights of 10–20 m above sea level 
(Bates et al., 2009; Quinn and Bates, 2011; Quinn et al., 2019; Quinn 
et al., 2000). Compiling those concentrations from six different ocean 
cruises that had measurements quantifying the continental influence 
shows clear similarities for the marine air masses with peaks in mass 
concentrations between 2 and 6 μm, at ~3 μm aerodynamic dry diam-
eter (Fig. 6a). SSA mass concentrations have been shown to be corre-
lated to wind speed in prior work (Lewis and Schwartz, 2004; Saliba 
et al., 2019) but the mass distributions illustrate the consistency in the 
peak of the >1 μm mass distribution and reflect a strong degree of 
similarity of SSA modes across seasons and regions. 

These mass size distributions were dried and size-segregated during 
six open-ocean cruises that also measured in situ tracers to exclude 
continental influences, namely <1 μm absorption (at 530 nm from 
PSAP) <0.8 Mm− 1 and radon concentration <540 mBq m− 3. In this 
simple summary of measurements, organic contributions are excluded 
because they were not available for the seven stage impactor bins, and 
sea salt is scaled from measured Na+ and Cl− and ammonium bisulfate 
from measured non sea salt sulfate (SO4

2− ). The accuracy of the mass 

Table 1 
Publications relevant to SSA production. Modified from Saliba et al. (2019).  

Reference Type Findings 

(Grythe et al., 2014) Review Positive dependence of SSA 
production on SST 

(Lewis and Schwartz, 
2004) 

Review SSA flux dependence on wind speed 
based on multiple laboratory and 
field studies 

(Meskhidze et al., 
2013) 

Review CCN fluxes and optical properties are 
still poorly constrained 

(Forestieri and Moore, 
2018; Forestieri 

et al., 2018) 

Laboratory Positive dependence of SSA 
concentration on SST using artificial 
seawater, but no correlation when 
using filtered but not autoclaved 
seawater 

(Fuentes et al., 2010) Laboratory Complex response of SSA number 
and mean diameter to dissolved 
organic amount for water collected 
off the West African coast 

(Martensson et al., 
2003)) 

Laboratory Complex dependence of SSA 
concentrations on SST using artificial 
seawater 

(Modini et al., 2013) Laboratory Decreased SSA production efficiency 
and increased mean diameter of 
largest SSA mode (~0.2 μm) with 
decreased surface tension 

(Sellegri et al., 2006b) Laboratory Enhancement of largest SSA mode 
(0.3 μm - 0.5 μm) with increased 
surfactants and wind stress (1 m s− 1) 

(Zabori et al., 2012a) Laboratory SSA flux dependence on wind speed 
based on multiple laboratory and 
field studies 

(Salter et al., 2015) Laboratory and 
model 

Increased SSA mean diameter with 
increased water temperature for 
laboratory experiments using 
artificial sea water and a 
temperature-controlled chamber 

(Jaegle et al., 2011) Model Positive dependence of SSA 
production on SST using field 
measurements and satellite 
observations 

(Burrows et al., 2016) Model Represented organic emissions in 
sea-spray using the OCEANFILMS 
partitioning model 

(Kasparian et al., 2017) Observational Aerosol number concentrations in 
the North Atlantic for 1.0–2.5 μm 
were consistent with Jaegle et al. 
(2011) 

(Lehahn et al., 2014) Observational Positive correlation with wind speed 
and negative correlation with SST 
and chlorophyll for SSA number 
concentrations with diameter larger 
than 0.5 μm 

(Middlebrook et al., 
1998) 

Observational Most particles larger than 0.16 μm 
contained organic compounds near 
Cape Grim in the Southern Ocean 

(Modini et al., 2015) Observational Fitted the tail of the marine size 
distribution to a lognormal function 
and argued that this mode was the 
salt mode using measurements from 
the Eastern Pacific 

(Murphy et al., 1998) Observational Large fraction of particles larger than 
0.16 μm sampled at Cape Grim in 
Southern Ocean contained sea salt 

(Odowd et al., 1997) Observational Positive correlation of SSA 
concentrations on wind speed for the 
Northeast Atlantic 

(O'Dowd et al., 2004) Observational Organics components contributed a 
substantial part of the submicron 
aerosol mass, especially during 
plankton blooms 

(Ovadnevaite et al., 
2012) 

Observational Gong (2003), Martensson et al. 
(2003), and Fuentes et al. (2010) 
SSA parameterizations with wind 
speed were higher than measured 
NaCl mass in the Eastern Atlantic 

(Quinn et al., 2000) Observational  

Table 1 (continued ) 

Reference Type Findings 

SSA concentrations and size depend 
on location, with submicron particles 
dominating SSA in the Northeastern 
Atlantic and Southern Ocean. 

(Quinn et al., 2017b) Observational Sea salt number concentrations 
contributed up to 30% of CCN in 
clean marine conditions and 
correlated positively with wind 
speed, using the Modini et al. (2015) 
method 

(Russell et al., 2010) Observational Organic compounds (similar to 
saccharides) contribute <50% of 
submicron particle mass and 
correlated positively with wind 
speed and Na+ mass 

(Gong, 2003) Observational +
model 

Modified the Monahan et al. (1986) 
parameterization of sea spray on 
wind speed to best fit concentrations 
from Odowd et al. (1997) 

(Dror et al., 2018) Satellite 
observations 

Positive correlation between wind 
speed and AOD on daily and yearly 
timescales but not on seasonal 
timescales and negative correlation 
between AOD and chlorophyll 
concentrations on seasonal 
timescales  
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distributions is limited by the number and width of the impactor size 
bins, as well as by other sampling constraints, with an effective 
compromise afforded by sampling from a 7-stage Berner impactor 
(Quinn et al., 2000). The mass concentration distributions illustrate the 
large mass concentrations >1 μm, with <1 μm bins contributing 10% or 
less (Kleefeld et al., 2002; Murphy et al., 1998; Quinn et al., 1998; Zheng 
et al., 2018). 

The open-ocean sea salt mass concentrations show a weak correla-
tion (0.12 < R2 < 0.2) of the >1 μm mass concentrations (and the 
summed mass from all bins) to the local wind speed, but the correlations 
for the <1 μm bins have R2 < 0.15. To quantify the size dependence on 
wind speed, the mass concentrations were normalized to wind speed and 
then the remaining variability was quantified as the ratio of the standard 
deviation to the mean. For >1 μm size bins, the standard deviations of 

the mass concentrations were near or below the means, making the ratio 
of standard deviation to mean approximately 1 or smaller (Fig. 6d). For 
the <0.5 μm bins, the ratio of the standard deviations to the means of the 
mass concentration normalized to wind speed are all larger than 1. This 
high standard deviation relative to the mean of the wind speed 
normalized mass concentrations reflects an apparent weakness of the 
dependence of the <0.5 μm bin mass concentrations on wind speed. The 
low wind speed dependence for <0.5 μm particles is analogous to the 
higher correlations of sea spray particles to wind speed when <0.5 μm 
particles were excluded (Fig. S17 of Saliba et al. (2019)). The <0.5 μm 
sea salt mass concentration may still be produced from breaking waves, 
but the processes that produce the smaller particles may have a greater 
dependence on other environmental conditions (such as surface 
composition, whitecaps, sea surface temperature (SST), and coastal 

Fig. 6. Mass size distributions (a,b) collected from six open-ocean cruises that also measured in situ tracers to exclude continental influences, namely <1 μm ab-
sorption (at 530 nm from PSAP) <0.8 Mm− 1 and radon concentration <540 mBq m− 3 (Quinn et al., 2000). Panel b has the same information as panel a, but with the 
axes zoomed in to show the submicron concentrations. The six cruises with appropriate measurements were the First Aerosol Characterization Experiment (ACE1) in 
1995, the International Chemistry Experiment in the Arctic Lower Troposphere (ICEALOT) in 2008, the Western Atlantic Climate Study (WACS) in 2014, and the 
North Atlantic Aerosol and Marine Ecosystem Study (NAAMES) campaigns in Winter 2015 (NAAMES1), Late Spring 2016 (NAAMES2), and Autumn 2017 
(NAAMES3). Organic contributions are excluded because they were not available. Sea salt is scaled from measured Na+ and Cl− ; ammonium bisulfate is based on 
measured non sea salt sulfate (SO4

2− ). Relative number size distributions (c) averaged over all six cruises in (a) are calculated using effective sea salt density of 2.0 
(Saliba et al., 2020) and 1.78 for ammonium bisulfate. This sensitivity to the mean diameter is quantified here with three different estimates to bound the mean 
diameter: (1) an upper bound at the 50% cutoff diameter for the bin (Dhigh = D50), (2) a lower bound at approximately the 50% cutoff diameter of the next smaller 
bin (Dlow = D50-dlogD), and (3) a best estimate at the geometric mean of these two values (Dmid = D50–0.5dlogD). The ratio of the standard deviation to the mean 
of the mass distributions normalized to the wind speed (d) are also shown for the six cruises. 
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effects) than on wind speed. Smaller particles could also experience 
more influence from confounding non-local sources contributing at 
longer lifetimes. Such variability in conditions could explain the wide 
range of reported parameterizations in this size range (Fig. 5). 

The measured mass concentrations for each size bin can also be used 
to estimate the number concentrations, assuming as a starting point that 
the two different types of particles are externally mixed, with one con-
sisting of sea salt and the other of ammonium bisulfate (Quinn et al., 
2000), and using an effective density of 2.0 for sea salt (Saliba et al., 
2020) and 1.78 for ammonium bisulfate. The largest uncertainty in this 
calculation of number concentrations arises from the width of the 
measured bins (dlogD), which bounds the possible mean dry diameter of 
the particles within each bin. This sensitivity to the bin mean diameter is 
quantified here with three different estimates to bound the mean 
diameter: (1) an upper bound at the 50% cutoff diameter (D50) for the 
bin (Dhigh = D50), (2) a lower bound at approximately the 50% cutoff 
diameter of the next smaller bin (Dlow = D50-dlogD), and (3) a best 
estimate at the geometric mean of these two values (Dmid =

D50–0.5dlogD). This range of mean diameter means that the mass per 
particle varies by a factor of 5–9 for the bins with D50 of 0.31, 0.55, 
1.06, 2.02, 4.13, and by factors of 12 for the smallest bin (D50 of 0.18) 
and 16 for the largest bin (D50 of 10.3). The uncertainty in the smallest 
bin has the largest effect on the number concentration, making the un-
certainty in the number concentration a factor of 12 for the <0.18 μm 
bin. Since the number concentration in the <0.18 μm bin represents 
more than half of the summed 7-bin number concentration, the uncer-
tainty in the sum is more than a factor of 12. This uncertainty is too large 
to use mass distributions to evaluate the absolute number flux, but since 

the error in bin mean diameter is likely to affect the sea salt and 
ammonium bisulfate number concentrations in the same way, the rela-
tive fractions of sea salt and ammonium bisulfate can be compared with 
less uncertainty. By normalizing the number per bin by the particles 
summed from all bins, for both sea salt and ammonium bisulfate particle 
types, the sensitivity to the mean diameter uncertainty is reduced 
(Fig. 6c). The resulting number distributions show that ammonium 
bisulfate accounts for the majority of <0.5 μm particles in most projects 
(Fig. 6c). In particular, the mean number concentration for the <0.18 
μm bin range shows that sea salt accounts for 28% to 34% compared to 
40% to 49% ammonium bisulfate particles (Fig. 6c). If the assumption of 
two separate particle types is relaxed as is likely more realistic, then the 
<0.18 μm bin has particles with 44% sea salt and 56% ammonium 
bisulfate (neglecting organic and trace constituents). Such mixed par-
ticles could be classified either as SMA based on the majority of mass 
being ammonium bisulfate or as SSA based on the sea salt being the 
primary particles to which secondary mass was added. 

2.2.2. Size distribution correlations 
The size distribution correlation approach for estimating sea salt 

concentrations was developed to attribute modes fitted to merged sub-
micron and supermicron size distributions to sea spray (Modini et al., 
2015). The interpretation of particles as sea spray was supported by 
showing that the summed mass concentration increased with wind 
speed (Fig. 7), from which a flux dependence on wind speed could be 
inferred (Saliba et al., 2019). By incorporating the high size resolution 
from differential mobility measurements along with >1 μm optical or 
aerodynamic size distributions, and using simultaneous <1 μm chemical 

Fig. 7. SSA mode diameter (dm) versus (A) wind speed (U18), (B) seawater particle attenuation at 660 nm (cp,660), (C) and SST. SSA number concentrations (NSSA) 
versus (D) wind speed, (E) cp,660, and (F) SST. The measurements are colored by campaign for Winter 2015 (NAAMES1), Late Spring 2016 (NAAMES2), Autumn 2017 
(NAAMES3), and Early Spring 2018 (NAAMES4). Lines of best fit for all four NAAMES campaigns are plotted as solid black lines if |R| > 0.3. Published parame-
terizations are plotted as dotted colored lines. The dotted blue curve in C is the mean diameter of the flux size distribution from Mårtensson et al. (Martensson et al., 
2003) (first right y axis) and the dotted yellow curve in C is the mean diameter of the particle size distribution from Salter et al. (2015) (second right y axis). The 
Odowd et al. (1997) SSA parameterization versus wind speed is shown in (D) as a dotted blue line. SSA flux production versus SST from Jaegle et al. (2011) at a wind 
speed of 8 m s − 1 (green dotted line right y axis) and SSA flux production from Martensson et al. (2003) (blue dotted line, right y axis) versus SST are shown in F. 
Parameterization for dm versus SST is shown in bold in C. The correlation between dm and SST (R = 0.61) decreased when excluding NAAMES 4 measurements 
sampled at latitudes south of 30◦N (R = 0.46). Reproduced from (Saliba et al., 2019). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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composition measurements for corroboration, the contribution of SSA to 
smaller sizes has also been evaluated. This approach showed that a 
single SSA mode with median diameter ranging from 0.05 to 1.1 μm was 
correlated with <1.1 μm Na+ and Cl− concentrations as well as wind 
speed for a number of open-ocean campaigns (Modini et al., 2015; 
Quinn et al., 2017b; Saliba et al., 2019). Smaller modes were also 
retrieved simultaneously from each distribution, but comparisons to 
chemical measurements and wind speed indicated their source was 
largely sulfate and organic components (Fig. 8) without a wind speed 
dependence (Modini et al., 2015; Saliba et al., 2019). 

Recent work has studied the accuracy of this approach in the absence 
of >1 μm size distribution measurements (Dedrick et al., 2022; Sanchez 
et al., 2020), showing that reasonable SSA number concentrations are 
retrieved with only <1 μm size distributions but that SSA mass con-
centrations are improved by constraining to coarse-mode scattering 
measurements (Dedrick et al., 2022). The range of retrieved sea spray 
modes does vary in not only number but also size and width (Table 2). 
The range of the reported parameters from each study does not appear to 
depend on the relative humidity of the measurements, suggesting the 
variability is greater than the dependence on hygroscopicity. The 
advantage of the size distribution-based approach is that it measures 
particle number concentrations directly with 10 bins or more per decade 
of diameter at high time resolution (<10 min), even though chemical 
composition is inferred. The correlation of retrieved SSA mode mass to 
measured <1.1 μm Na+ and Cl− composition provides indirect support 
for the chemical identification, although this approach is not expected to 
be sufficiently sensitive to identify particles <0.1 μm. The small and 
variable mass concentrations for particles <0.1 μm noted above may 
obscure any relationship between chemical composition and modes in 
this size range, which makes it difficult to rule out SSA <0.1 μm but also 
provides no support for the contribution of SSA in that size range. 

2.2.3. Physical property proxies 
The physical property proxy approach has used the low volatility or 

the high hygroscopicity of sea salt particles to identify particles with 
those properties as sea salt. The volatility approach separates the par-
ticles in optical or mobility size distributions by heating sufficient to 
evaporate sulfate and some organic components and identifying the 
remaining particles as nonvolatile SSA (Blot et al., 2013; Clarke et al., 
1987; Clarke and Kapustin, 2003; Odowd and Smith, 1993). Measure-
ments at three levels of a coastal tower were used to identify the SSA 
contribution by the amount the >0.04 μm concentrations at 360 ◦C 
sampled at 5 m above sea level (ASL) exceeded the 20 m ASL concen-
trations, where the near-surface concentration exceedances at 5 m were 
interpreted as recent emissions of SSA in the coastal zone that had not 
yet mixed up to the 20 m level (Clarke et al., 2003; Clarke and Kapustin, 
2003; Clarke et al., 2006). The measurements showed a heated peak in 
the number size distribution at 0.03 μm, which could result from 
evaporation of semi-volatile material from ~0.1 μm. These particles 
could be consistent with a mixture of the sea salt and sulfate mass 
concentration in the <0.18 μm bin measured by Quinn and colleagues 
(Fig. 6c). Mass spectrometry and combined thermal/electron micro-
scopy measurements also support the presence of sea salts in particles as 
small as 0.13 μm over the Southern Ocean (Murphy et al., 1998) and at 
Macquarrie Island (Kreidenweis et al., 1998). To rule out the con-
founding effects of nonvolatile organic components that may be asso-
ciated with quantifying the contribution from SSA, chemical 
measurements were used to show that SSA represented a small contri-
bution by excluding measurements with significant organic or black 
carbon from open-ocean cruises (Blot et al., 2013). A disadvantage is 
that the heated size distributions measure particles at diameters reduced 
from their size at ambient temperature, making it necessary to back- 
calculate the ambient particle size distribution from the lower concen-
trations in the heated distribution. 

Hygroscopicity has also been used as an indirect way to identify sea 
salt particles at a coastal site in the northeastern North Atlantic, showing 
that 2% of the measurements collected during a 5 year period have a 
large number contribution to hygroscopic particle concentrations <0.2 

Fig. 8. (Top row) AMS-based organic + sulfate (Org + SO4
2− ) submicron mass concentrations and accumulation mode mass concentration (Macc, calculated by 

integrating the marine number size distribution between 0.08 μm and 0.32 μm and assuming spherical particles and a density of 1.0 g/cm3) for NAAMES. (Bottom 
row) AMS submicron chloride mass concentrations versus Macc. Solid black lines are lines of best fit obtained. AMS-based concentrations are calculated assuming a 
collection efficiency of unity, so the numerical values the slopes shown are not quantitative. Reproduced from (Saliba et al., 2019). 
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μm dry diameter (Xu et al., 2022; Xu et al., 2021). This method relies on 
a cutoff value of κ = 0.67 for the size-selected hygroscopic tandem dif-
ferential mobility analyzer measurements, which is interpreted as a 
mixture of organic components contributing less than half of the volume 
(assuming κ < 0.1 for organic components) and sea salt contributing the 
majority (with a 20% uncertainty from the uncertainty in its hygro-
scopicity for κ = 1.0–1.2) (Zieger et al., 2017). The interpretation of 
particles with κ > 0.67 as SSA assumes no contribution from ammonium 
bisulfate (κ = 0.8 for ammonium bisulfate), even though the ammonium 
bisulfate is typically measured in particles <0.18 μm in marine envi-
ronments (Quinn et al., 2000). (Note that the hygroscopicity of ammo-
nium bisulfate was estimated from Köhler theory, with the molality- 
dependent osmotic coefficient using an ion-interaction approach with 
tabulated parameters (Pilinis and Seinfeld, 1987; Pitzer and Mayorga, 
1973)). This interpretation of particles with κ > 0.67 as sea salt results in 
a much higher SSA number concentration and contradicts the open- 
ocean results for the measured mass distributions (Fig. 6a) and for the 
size distribution correlation approach (Fig. 8). The high SSA concen-
tration implies that there are no sulfate or organic particles contributing 
to CCN during the 2% of measurements selected. Certainly, this is 
possible for the 940 h of measurements during a 5-yr period (with un-
specified selection criteria), but the absence of supporting chemical 
correlations for the hygroscopicity identification suggest the results 
should be considered with caution. The sparse sampling of the extended 
data set suggests also that the apparent contradiction between this 
finding for a coastal location and those for the open-ocean studies, and 
the lack of correlation to wind speed, may indicate that regional and 
seasonal variability, as well as coastal differences from open-ocean 
wave-breaking, are important factors. 

2.3. Composition of SSA 

Seawater includes a mixture of dissolved inorganic salts, with Na+

and Cl− typically accounting for 86% of the inorganic mass and the 
remainder constituted primarily by Mg2+, Ca2+, K+, SO4

2− (sulfate), 
HCO3

− , Br− , B3+, and F− (Holland, 1978). Together the mass contribu-
tion of these sea salts can be estimated as from the relation 
Na++1.47*Cl− (Quinn et al., 2000). The contribution of trace salts to 

seawater means that the particle hygroscopicity is slightly lower than 
that of pure NaCl (de Leeuw et al., 2011; Ming and Russell, 2001; Tang 
et al., 1997; Zieger et al., 2017). The inorganic components of sea spray 
are expected to be generally refractory, which is the term used in aerosol 
mass spectrometry to indicate that they are largely nonvolatile when 
heated to 600 ◦C. The presence of SO4

2− as nearly 8% of the dissolved 
inorganic salts means that measurements of sulfate in marine aerosol 
will include both sulfate from seawater and sulfate from SMA and other 
secondary sources. To distinguish between these types of sulfate, the 
amount of sulfate associated with sea salt is calculated from the seawater 
composition and the remainder is designated as “non sea salt” sulfate. 
Analogous “non sea salt” quantities can also be defined for Br− and K+, 
in order to calculate the amount of these constituents that may be 
associated with wildfires, and for Ca2+, in order to identify the amount 
that may be associated with dust (Bottenus et al., 2018; Gilardoni et al., 
2009; Gilardoni et al., 2016; Song et al., 2021). 

The presence of Na+ and Cl− in the <0.18 μm bin of the open-ocean 
ion chromatography measurements (Fig. 6) is important because the 
presence of nonvolatile components can only be explained by the direct 
production of droplets during bubble bursting, namely there is no sec-
ondary source of Na+ and Cl− . Reports of SSA particles <0.03 μm dry 
diameter in coastal and lab measurements are consistent with a tail of 
larger modes, although separate modes of particles <0.1 μm dry diam-
eter have been reported (Clarke et al., 2003; Martensson et al., 2003; Xu 
et al., 2022). There are no direct chemical measurements in this size 
range, but hygroscopicity values less than that of salt and mass loss 
during volatility measurements indicate the measured modes are 
partially sea salt with the remainder including less hygroscopic and 
more volatile sulfate and organic components. 

The ocean contains both dissolved (DOC) and particulate (POC) 
forms of organic carbon, which are usually defined operationally as the 
quantities that do (dissolved) and do not (particulate) pass through a 
submicron-sized pore filter when suspended in seawater (Carlson and 
Hansell, 2015). Several techniques have been used to identify organic 
components of SSA (Table 3). Both DOC and POC mix with sea salts 
when film and jet drops are formed (Gong, 2003; Walls and Bird, 2017), 
although the contributions of 20% on average (but up to 60%) organic 
components for 0.1–1 μm fraction are likely associated primarily with 

Table 2 
Literature reported values of sea spray modal parameters. Number mean diameters (Dg,number) were converted to mass mean diameters (Dg,mass), integrating over 
particle sizes 0.01–10 μm, and averaging over a total particle concentration range of 1–100 cm− 3. Values are averages unless noted as an upper or lower bound. 
Modified from Dedrick et al. (2022).     

Parameter 

Reference Experiment type Ocean basin Dg,number (μm) Dg,mass (μm) σg 

(Lewis and Schwartz, 
2004), 

(Sellegri et al., 2006a), 

field measurements 
(RH: 80%)  

0.3 1.3 3 

(Keene et al., 2007a, 
(Fuentes et al., 2010), 
(Modini et al., 2010), 
(Bates et al., 2012), 

(Zabori et al., 2012b) 

laboratory-based bubble bursting 
(RH: ambient)  

0.05 (lower bound) 
0.1 (upper bound) 

0.25 (lower bound) 
0.48 (upper bound) 

2.8 

(Prather et al., 2013a) laboratory-based breaking wave 
flume 

(RH: 10 ± 15%) 

N.E. Pacific 0.16 0.88 3 

(Modini et al., 2015) field measurements 
(RH: < 40%) 

N.E. Pacific 0.14 (lower bound) 
0.26 (upper 

bound) 

0.5 (lower bound) 
1.3 (upper bound) 

2.5 (lower bound) 
3 (upper bound) 

(Quinn et al., 2017a) field measurements 
(RH: variable, mostly <50%) 

Pacific, Southern, Arctic, and 
Atlantic 

0.3 1.08 2.5 

(Saliba et al., 2019) field measurements 
(RH: < 40%) 

N. Atlantic 0.5 1.6 2.3 

(Sanchez et al., 2021a) field measurements 
(RH: ambient) 

Southern Ocean 0.6 0.71 1.4 

(Dedrick et al., 2022) field measurements 
(RH = 55 ± 10%) 

S. Atlantic 0.4 (UHSAS-only) 
0.5 (UHSAS- 

NEPH) 

0.68 (UHSAS-only) 
1.47 (UHSAS- 

NEPH) 

1.8 (UHSAS-only) 
2.4 (UHSAS- 

NEPH)  
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film drops (Bates et al., 2020; Keene et al., 2017). In contrast, the >1 μm 
sizes have negligible organic contributions, with 100% of mass produced 
by bubbling proxies having a negligible organic volume fraction ac-
cording to open-ocean bubbling experiments (Keene et al., 2017) and 
open-ocean ambient measurements (Quinn et al., 1998). The qualitative 
explanation for the size dependence of the organic contribution is that 
the thinner the bubble film (and the smaller the bubble), the larger the 
contribution of the organic surface constituents to the film composition 
(Fig. 9)(Frossard et al., 2014a; Jiang et al., 2022b). 

Many experiments using realistic physical simulations of the sea 
spray aerosol production process have shown that organic components 
can be measured in primary submicron SSA immediately or very shortly 
after emission, suggesting that at least some organic components enter 
the aerosol together with salt rather than through secondary formation 
from condensation of volatile gases (Alpert et al., 2017; Ault et al., 
2013b; Bates et al., 2012; Facchini et al., 2008b; Frossard et al., 2014a; 
Gao et al., 2012; Keene et al., 2007b; Kieber et al., 2016; Long et al., 
2014; Quinn et al., 2014; Schmitt-Kopplin et al., 2012). The primary sea 
spray origin of marine organic components is also supported by labo-
ratory studies and field experiments using a variety of analytical 
methods (including Proton Nuclear Magnetic Resonance (H-NMR), 
Fourier Transform Infrared Spectroscopy (FTIR), Fourier Transform Ion 
Cyclotron Resonance (FT-ICR), Gas Chromatography Mass Spectrometry 
(GCMS), High Resolution Time-of-Flight Aerosol Mass Spectrometry 
(HR-ToF-AMS), Evolved Gas Analysis (EGA), Ion Chromatography (IC), 
High Performance Liquid Chromatography (HPLC), liquid-phase Total 

Table 3 
Selected references investigating the organic composition and concentration of 
SSA, generated SSA, SMA, and general Marine Aerosol measured in different 
ocean regions (from Frossard et al., 2014b).  

Reference Ocean 
Regiona 

OM Composition Particle Size 
(OM, 
μg m¡3) 

SSA    
(Fu et al., 2013b) Arctic Saccharides Bulk 
(Leck et al., 2013) Arctic Heteropolysaccharides 0.035–10 μm 
(Russell et al., 

2010) 
Arctic and N 
Atlantic Polysaccharides Submicron 

(Hawkins and 
Russell, 2010) 

Arctic and SE 
Pacific 

Polysaccharides, 
proteins, and 
phytoplankton 
fragments 

Submicron 
and 
Supermicron 

(O'Dowd et al., 
2004) 

NE Atlantic 
(Ireland) 

Enriched in WIOC with 
high molecular weight Submicron 

(Ceburnis et al., 
2008) 

NE Atlantic 
(Ireland) WIOC Submicron 

(Facchini et al., 
2008b) 

NE Atlantic 
(Ireland) WIOM Submicron 

(Bigg and Leck, 
2008) 

NE Atlantic 
(Ireland) Exopolymers 

Submicron, 
< 200 nm 

(Ovadnevaite 
et al., 2011) 

NE Atlantic 
(Ireland) Hydrocarbon Submicron 

(Mochida et al., 
2002) N Pacific 

LMW saturated fatty 
acids Bulk 

(Sciare et al., 
2009) Austral Ocean WIOC Bulk 

Generated SSA    
(Gao et al., 2012) Arctic Polysaccharides Bulk 
(Facchini et al., 

2008b) 
NE Atlantic 
(Ireland) WIOM: colloids Submicron 

(Facchini et al., 
2010b) 

NE Atlantic 
(Ireland) 

WIOM: lipo- 
polysaccharides Submicron 

(Keene et al., 
2007b) 

NW Atlantic 
(Sargasso Sea) WSOC 

Submicron 
and 
Supermicron 

(Schmitt-Kopplin, 
2012) SE Atlantic 

Biomolecules with high 
aliphaticity < 10 μm 

(Bates et al., 
2012) 

NE Pacific 
(Coastal) 

Polysaccharide-like, 
Alkyl-like, pattern of CH- 
fragments Submicron 

(Ault et al., 
2013a) 

NE Pacific 
(Coastal) Aliphatic hydrocarbons 0.15–10 μm 

(Quinn et al., 
2014) 

NE Pacific 
(Coastal) and 
NW Atlantic Saccharide-like Submicron 

SMA    
(Fu et al., 2013b) Arctic Isoprene product Bulk 

(O'Dowd et al., 
2004) 

NE Atlantic 
(Ireland) 

Enriched in WSOC 
(partly oxidized species 
with extended aliphatic 
moieties) Submicron 

(Ceburnis et al., 
2008) 

NE Atlantic 
(Ireland) WSOC Submicron 

(Facchini et al., 
2008b) 

NE Atlantic 
(Ireland) WSOM Submicron 

(Facchini et al., 
2008a) NE Atlantic 

WSOC – dimethyl and 
diethyl ammonium salts Submicron 

(Facchini et al., 
2010b) 

NE Atlantic 
(Ireland) 

Diethyl and dimethyl 
amine salts Submicron 

(Rinaldi et al., 
2010b) 

NE Atlantic 
(Ireland) 

WSOC: MSA, 
alkylammonium salts, 
dicarboxylic acids Submicron 

(Meskhidze and 
Nenes, 2006) 

Southern 
Ocean Isoprene product Bulk 

(Turekian et al., 
2003) 

NW Atlantic 
(Sargasso Sea) Oxalate 

Submicron 
and 
Supermicron 

Marine Aerosolb    

(Cavalli et al., 
2004) 

NE Atlantic 
(Ireland) 

WIOC; aliphatic and 
partially oxidized 
humic-like substances 

Submicron OC 
(0.66); 
Supermicron 
OC (0.26) 

WSOC  

Table 3 (continued ) 

Reference Ocean 
Regiona 

OM Composition Particle Size 
(OM, 
μg m¡3) 

(Cavalli et al., 
2004) 

NE Atlantic 
(Ireland) 

Submicron 
0.25 

(O'Dowd et al., 
2004) 

NE Atlantic 
(Ireland) WIOC and WSOC 

Total OC  
(0.07, LBA; 
0.62, HBA) 

(Yoon et al., 
2007) 

NE Atlantic 
(Ireland)  

Total OC 
(1.2, spring; 
0.1, winter) 
Submicron OC 
(0.2, spring; 
0.05, winter) 

(Ovadnevaite 
et al., 2011) 

NE Atlantic 
(Ireland)  

Submicron 
(3.8) 

(Decesari et al., 
2011) NE Atlantic 

WIOC similar to lipids; 
WSOC containing fatty 
acids, alkanoic acids, 
aliphatic acids, sulfate 
esters Submicron 

(Schmitt-Kopplin, 
2012) SE Atlantic 

Biomolecules with high 
aliphaticity < 10 μm 

(Crahan et al., 
2004) 

Tropical Mid- 
Pacific 

Dicarboxylic acids, 
carbohydrates < 3.5 μm 

(Kawamura and 
Gagosian, 
1987) N Pacific 

Oxo-, mono-, and di- 
carboxylic acids Bulk 

(Matsumoto and 
Uematsu, 2005) N Pacific 

Free amino acids in 
WSOC < 2.5 μm 

(Bigg, 2007) 
SW Pacific 
(Tasmania) 

WIOC aggregates; 
exopolymeric gels 

Submicron, 
< 200 nm 

(Shank et al., 
2012) SE Pacific N/A 

Submicron 
(0.01) 

(Kuznetsova 
et al., 2005) 

NW 
Mediterranean 

Proteins, amino acids, 
and polysaccharides in 
gels Bulk 

(Fu et al., 2011) 

N Pacific, N 
Atlantic, 
Indian, South 
China 

LMW fatty acids, fatty 
alcohols, and sterols Bulk  

a The specific stationary sampling locations are in parentheses. 
b The OM in the studies in this category were not identified as SSA or SMA and 

are thus included as general atmospheric marine aerosol particles (aMA). 
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Organic Carbon (TOC), Raman microspectroscopy, and Atomic Force 
Microscopy (AFM)) (Ault et al., 2013b; Bondy et al., 2017; Frossard 
et al., 2014b). Because inorganic sea salts are generally refractory, 
measurements of organic contributions to sea salt by non-refractory 
methods have been shown to miss the organic components on parti-
cles with sea salt (Frossard et al., 2014b). 

The organic components of seawater are expected to be produced as 
the metabolic byproducts of phytoplankton and other ocean biota, 
which also serve as nutrients for a variety of ocean organisms (Aluwi-
hare et al., 1997; Burrows et al., 2014; Gantt et al., 2011). Some of the 
organic components are expected to track with the populations of these 
biota for which chlorophyll has been used as a proxy, however the va-
riety of organisms and their differing (or nonexistent) amounts of 
chlorophyll make it problematic as a general tracer for all organic- 
producing organisms. The composition of the organic components of 
seawater is likely to include thousands of molecules that range from 
carbohydrates to amino sugars to lipids, many of which are macromol-
ecules that are difficult to isolate or to characterize fully as molecular 
structures (Aluwihare et al., 1997; Aluwihare et al., 2005; Repeta et al., 
2002). Individual molecules have been speciated by GCMS and other 
techniques, accounting for a few percent of the seawater composition 
(Facchini et al., 2008a; Facchini et al., 2008b; Gagosian, 1983; Lawler 
et al., 2020). Indirect characterization of the organic carbon in <1 μm 
marine aerosols has accounted for a larger proportion of organic 

components using functional group characterization (Russell et al., 
2010). Subsequent work has shown consistently a majority of quantified 
organic mass can be characterized by alcohol groups with minor con-
tributions from amine and alkane groups (Fig. 10) (Frossard et al., 
2014a). This composition is consistent with amino sugars and more 
generally carbohydrates, although the uncertainties do not preclude 
contributions from lipids. 

Primary contributions of amine groups are evident in <1 μm samples 
collected from proxies of bubble bursting and ambient particles (Berta 
et al., 2023; Frossard et al., 2014a). Measurements of the organic 
functional groups of marine aerosol particles <0.5 μm show some sim-
ilarities to the <1 μm composition (Lewis et al., 2021). The higher 
variability and stronger contribution from secondary amine and acid 
groups <0.5 μm likely indicates a combination of primary and secondary 
marine sources to the aerosol (Berta et al., 2023). 

2.4. SSA contribution to scattering, CCN, and INP 

SSA particles contribute to light scattering in the atmosphere, cloud 
condensation nuclei (CCN), and ice nucleating particles (INP). To 
quantify SSA impacts, a combination of laboratory measurements and 
clean marine observations have been incorporated in global transport 
and climate models using parameterizations that predict particle mass as 
functions of wind speed for a specified size distribution (Anguelova and 
Webster, 2006; Brumer et al., 2017; Gong, 2003). More sophisticated 
parameterizations have also incorporated dependence on white caps and 
SST. Verification of these parameterizations with observations has been 
promising but limited in scope due to the mismatch of time scales be-
tween available observations and global models (Fig. 11) (Jaegle et al., 
2011). Recent advances in satellite retrievals may improve these com-
parisons with new products for coarse and fine marine-related particle 
mass concentrations (Dasarathy et al., 2021; Dror et al., 2018), although 
chemical composition cannot be retrieved directly by satellite. 

SSA is important in the atmosphere because of its direct contribu-
tions to albedo, as well as its indirect impacts on clouds and precipita-
tion. The direct contribution is from the scattering of light, and this 
effect is controlled by the mass concentration of salt particles and their 
humidity-dependent hydration. Almost all of the particle mass (>90%) 
comes from particles >1 μm dry diameter (Fig. 6a). The indirect effect 
on albedo is the result of the provision of CCN to clouds, which often 
scales with the number concentration of particles and provides the 
nucleation sites on which droplets form. Clouds respond to increases in 
CCN number immediately by an increase in cloud droplet number, 
resulting in brighter clouds (Twomey, 1977). A variety of “knock-on” 
effects and more subtle aerosol-cloud impacts also occur that can change 
the extent, depth, and optical thickness of clouds (Fan et al., 2016). 
These so-called “cloud adjustments” typically enhance the sensitivity of 
Earth's climate to aerosol emissions (Sherwood et al., 2015). Super-
micron salt particles can also act as “giant” CCN and affect precipitation 
(Dziekan et al., 2021; Feingold et al., 1999; Jensen and Lee, 2008; Jung 
et al., 2015; Reiche and Lasher-Trapp, 2010). 

In addition, the glaciation of supercooled cloud droplets can be 
affected by particles that act as ice nucleating particles (INP), potentially 
impacting cloud evolution, precipitation, Earth's radiative budget, and 
cloud feedback, especially when emissions occur in remote regions such 
as the Arctic and Southern Ocean, where cloud phase feedbacks are 
important (Burrows et al., 2022b; Gettelman and Sherwood, 2016; Tan 
et al., 2022; Tan and Storelvmo, 2016; Tan et al., 2016; Vergara-Tem-
prado et al., 2018). 

The impacts of SSA on CCN, INP, and scattering depend strongly on 
SSA size distributions. CCN are primarily sensitive to number concen-
trations; the majority of sea spray particle number concentration is <1 
μm dry diameter (Fig. 6c). In contrast, marine INP are more sensitive to 
larger SSA; supermicron SSA particles contribute more effectively to INP 
populations but quantifying the impact of these larger SSA in the at-
mosphere remains challenging (Mitts et al., 2021; Steinke et al., 2022). 

Fig. 9. Average functional group composition of OM in (top) particles gener-
ated with Sea Sweep (a floating bubble generator) and Bubbler (a continuous- 
feed, on-board bubble generator), (middle) surface seawater, and (bottom) deep 
seawater at 27.4 m and 2500 m measured in (left column) productive and (right 
column) nonproductive seawater during WACS. The term “productive” is used 
to mean seawater with high chlorophyll relative to the campaign average. The 
colors in the pies represent the organic functional group fractions for hydroxyl 
(pink), alkane (blue), and amine (orange). The bubbles show the bubble 
draining process in both seawater types, with more surfactant in the productive 
seawater. The OM is shown as hydrophobic (blue squares), hydrophyllic (pink 
circles), and polysaccharides (red circles). Reproduced from (Frossard et al., 
2014a). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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Supermicron SSA also play an important role in scattering, although this 
effect is driven by mass rather than number concentration (Fig. 6a). The 
different size dependences of these effects make it important to identify 
the size distribution of sea spray particles and their relative contribution 
to the atmosphere in open-ocean regions. 

2.4.1. SSA contribution to light scattering 
Sea salt particles >1 μm have been shown to have a large role in 

scattering light in clean marine conditions, indicating a large role for 
wind-driven particles in scattering light over the ocean (Chamaillard 
et al., 2006; Covert et al., 1972; Kleefeld et al., 2000; O'Dowd et al., 
2010; Quinn et al., 1998; Quinn et al., 2004). Satellite and surface-based 
aerosol optical depth (AOD) measurements in clear sky conditions have 
shown a dependence on local wind speed that is consistent with pa-
rameterizations based on in situ observations (Mulcahy et al., 2008; 
O'Dowd et al., 2010; Smirnov et al., 2012), suggesting that the satellite 
retrievals provide reasonable proxies for sea spray particle mass con-
centrations. Early retrievals based on Moderate Resolution Imaging 
Spectroradiometer (MODIS) Collection 5 may have overestimated AOD 
at wind speeds >6 m s− 1, due to wind-speed dependent changes in open- 
ocean surface roughness and white cap foam fraction that affected the 
assumed surface albedos (Kleidman et al., 2012). MODIS Collection 6 
resolved this systematic bias by employing a wind speed look-up table 
(Kleidman et al., 2012; Levy et al., 2013). This revision produced a more 
modest dependence of AOD on wind speed over the open ocean (Mer-
kulova et al., 2018). The remaining wind speed dependence, when 
combined with the observations of >1 μm particles accounting for 90% 
or more of sea spray mass (Section 2.2.1, Fig. 6), indicates that satellite 
clear-sky retrievals of aerosol optical depth include signatures for wind- 
driven sea spray aerosol in marine regions. 

Column retrievals of coarse-mode aerosol optical depth (AODc) from 
MODIS are limited by cloud coverage and lack of vertical resolution 
(Ichoku et al., 2004), but recent approaches to marine aerosol optical 
depth (MAOD) have used the NASA Cloud-Aerosol Lidar and Infrared 
Pathfinder Satellite Observation (CALIPSO) spaceborne lidar to retrieve 
vertical profiles of layer-specific AOD (including the marine boundary 
layer) (Dasarathy et al., 2021; Kim et al., 2018). The lidar technique can 
measure under conditions that would challenge passive remote sensors, 
such as partial cloud cover and low sun angles. Recent work based on 
AODc and MAOD retrievals has investigated a seasonal biological 
contribution in the tropics and in the Antarctic, which show that the 
dependence on wind speed may be reduced or enhanced by biologically- 
produced surfactants in the summer (Dasarathy et al., 2023; Dror et al., 
2018). Comparisons with surface-based column optical depth mea-
surements from AERONET have shown good correspondence between 
with satellite and in situ measurements (Asmi et al., 2018; Heslin-Rees 
et al., 2020; Holben et al., 2001; Kaufman et al., 2001; Porter et al., 
2003; Smirnov et al., 2011; Virkkula et al., 2022). 

2.4.2. SSA as CCN 
The most direct measurements of SSA are chemical mass distribu-

tions, but CCN concentrations require the accurate size resolution 
afforded by number distributions. Calculating the contribution of SSA to 
CCN based on the chemical mass approach is uncertain, since the largest 
number of particles resides in the smallest bin. The estimated mean 
diameter of 0.12 μm for the <0.18 μm bin is below the critical diameter 
of 0.13 μm for sea salt particles for a supersaturation of 0.1% (Fig. 12) 
(Sanchez et al., 2018), meaning that the high uncertainty in the <0.18 
μm bin may not be relevant for low marine stratocumulus. However, for 
higher supersaturations the uncertainty in estimating number from mass 

Fig. 10. Comparison of the selected normalized organic FTIR spectra and average functional group composition measured at (a) the California Nexus study (CalNex), 
(b) WACS Station 1, and (c) WACS Station 2 in the gPMA generated with (top) the Bubbler, (middle) the Sea Sweep, and (bottom) the corresponding composition of 
OM in surface seawater. Pies represent the organic functional group composition as hydroxyl (pink), alkane (blue), and amine (orange). The dashed vertical lines 
indicate hydroxyl functional group peak absorption at 3369 cm− 1 (pink) and amine functional group peak absorption at 1630 cm− 1 (orange). The range of alkane 
functional group absorption from 2980 to 2780 cm− 1 (blue dashed lines) is also shown. The higher wave number peak absorption of the hydroxyl functional groups is 
evident in the seawater panel. The functional group compositions and spectra are from the subset of collocated samples. Reproduced from (Frossard et al., 2014a). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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reduces the utility of using size-resolved mass concentrations to estimate 
chemically specific number concentrations. 

Using the size distribution correlation approach to evaluate the 
contribution of SSA to CCN has shown that SSA contributes a third or 
less of CCN in open-ocean clean marine conditions (Fig. 13) (Quinn 
et al., 2017b). This contribution is similar to the results suggested by the 
mass distribution-based calculation of number distribution in Fig. 6c, 
which indicates <1 μm particles have an SSA contribution of 38% 
compared to 62% from SMA (ammonium bisulfate) for the Dmid mean 
diameters including the smallest bin with Dmid = 0.12 μm. SMA is 
discussed in detail in Section 3, and the role of SMA in contributing to 
CCN is summarized in Section 3.3. If only particles larger than the SSA 
critical diameter of 0.13 μm at 0.1% supersaturation are included, that 
would give contributions of 30% SSA and 70% SMA. The similarity of 
the open-ocean results from size-distribution correlations approach 
(Fig. 13) and chemical mass measurements approach (based on the 
number distributions in Fig. 6c) shows broad agreement across the first 
two approaches for open-ocean measurements from six cruises. The 
physical property approach with volatility found that SSA accounted for 
20%–40% of CCN over the southeastern Pacific (Blot et al., 2013), 

consistent with the first two approaches described above. More larger 
particles, implying more CCN, were also attributed to entrainment of 
free tropospheric aerosol than to <1 μm SSA particles at Christmas Is-
land (Clarke et al., 1996). A model-based estimate of CCN for the 
Southern Ocean was also consistent with this result, concluding that the 
seasonal variations in sulfate aerosol were primarily attributable to SMA 
rather than SSA (McCoy et al., 2015). 

The physical property approach with hygroscopicity has identified a 
much higher contribution of SSA to CCN, estimated as 2 or 3 times more 
than the size distribution correlation approach (Xu et al., 2022). There is 
occasional evidence for this higher CCN contribution in estimated 
number concentrations from the open-ocean mass mode < 0.18 μm 
(Fig. 6c) for a few times in each project, possibly representing 2% or 
more of the sampling time. Such similar conditions could explain the 
Mace Head observations (Xu et al., 2022), although the high number 
contributions they reported do not seem sufficiently representative to 
use as the basis for a global mean parameterization for marine areas 
since the majority of time the number concentrations are generally 
lower for sea salt than for ammonium bisulfate. 

While satellite-derived AOD has retrieved reasonable estimates of 

Fig. 11. Time series of coarse mode sea 
spray mass concentration during the 
Radiatively-Important Trace Species 1993 
(RITS-93), ACE1, and ICEALOT PMEL 
cruises. For each cruise, observations of sea 
salt concentrations are shown with black 
circles. The horizontal bar corresponds to 
the instrumental averaging period. The three 
lines are the three different models: standard 
model (MODEL-STD, red), model using Eq. 
(3) from Jaegle et al. (2011) (MODELU2, 
blue), model using Eq. (4) from Jaegle et al. 
(2011) (MODEL-SST, green). The bottom 
panel shows the timeseries of observed 10 m 
wind speed (black dots) compared to the 
modeled windspeed (red line) as well as the 
observed SST (blue). Reproduced from 
(Jaegle et al., 2011). (For interpretation of 
the references to colour in this figure legend, 
the reader is referred to the web version of 
this article.)   

L.M. Russell et al.                                                                                                                                                                                                                               



Earth-Science Reviews 239 (2023) 104364

14

the SSA mass concentration, the large contribution of relatively few >1 
μm SSA to the light scattering limits its ability to quantify the more 
numerous and CCN-relevant <1 μm SMA and SSA particles. Recent ad-
vances in relating AOD to fine particle mass concentration in urban 
environments using high-spectral resolution lidar (Sawamura et al., 
2017) are not effective in the presence of the coarse mode aerosol found 
in marine environments. However, combining satellite retrievals of 
cloud drop number concentrations (Painemal et al., 2020; Painemal 
et al., 2021) with AOD retrievals may provide an approach to quanti-
fying CCN number concentrations. 

2.4.3. SSA as ice nuclei 
Although SSA is largely composed of inorganic salts that tend to 

suppress ice formation, SSA can provide a source of ice-nucleating 
particles (INP). In particular, the inclusion of organic and biological 
components appears to play a critical role in enabling SSA to act as INP, 
thereby enhancing the immersion-mode nucleation of supercooled 
droplets to ice (DeMott et al., 2016). The ice-nucleating entities that 
contribute to the INP activity of SSA may be associated with the sea 
surface microlayer (Wilson et al., 2015), and the presence of marine INP 
in the ambient atmosphere may correlate to ocean biological indicators 
(Trueblood et al., 2021). 

Marine INP are typically less effective and more scarce than dust or 
terrestrial biological particles (DeMott et al., 2016; Ickes et al., 2020; 
Irish et al., 2017; Irish et al., 2019; McCluskey et al., 2018a; Twohy et al., 
2021; Wex et al., 2019). Specifically, results from a wave tank experi-
ment showed that SSA particles have <1% of the ice nucleation effec-
tiveness (nucleating sites per particle area) compared to continental 
particles (DeMott et al., 2016). In addition, INP concentrations in clean 
marine regions such as the Southern Ocean are two or more orders of 
magnitude smaller than INP concentrations in continental air (McClus-
key et al., 2018a). However, both models and observations have shown 
that SSA particles can serve as INP in the absence of better nuclei such as 

dust (Chen et al., 2021; DeMott et al., 2016; McCluskey et al., 2018a; 
Vergara-Temprado et al., 2017; Wilson et al., 2015). Observations have 
identified episodes in which marine INP provide the main INP source 
along the coastlines of the North Atlantic and Pacific Oceans (Cornwell 
et al., 2019; McCluskey et al., 2018b). 

In addition to acting as INP when immersed in supercooled cloud 
droplets, some constituents of SSA have been shown to be capable of 
contributing to ice formation by serving as nuclei for the deposition of 
water vapor, a mode of ice nucleation that can be important in the upper 
troposphere (Knopf et al., 2011; Patnaude et al., 2021; Wolf et al., 2019). 
However, observations of this ice nucleation mode for ambient SSA are 
limited, and it is unclear how to extrapolate from the observed ice 
nucleation behavior of individual constituents to complex ambient SSA 
particles. Few direct observations are available of particle chemical 
composition and INP in the upper troposphere. Consequently, con-
straining the impacts of SSA on deposition-mode ice nucleation remains 
difficult. 

Global models have been used as a tool to estimate climate impacts of 
INP, but such models are not yet capable of representing all of the 
processes important in controlling the climate response to INP at the 
necessary scales. Given the limited role of SSA as INP when better INP 
such as dust are present, it is not yet possible to quantify the overall role 
of SSA as INP globally. More research is needed to better quantify SSA 
contributions to INP in order to assess which areas of the Earth would be 
most sensitive to SSA contributions to INP (Burrows et al., 2022b). 

3. SMA fluxes 

The contributions of gases to the aerosol are considered “secondary” 
because they are emitted in the vapor phase and only form liquid or solid 
particles after atmospheric processing, which typically includes oxida-
tion to convert the emissions into less volatile compounds. Several ap-
proaches have been used to distinguish secondary contributions of SMA 
from the primary contributions of SSA (Table 4). Chemically-specific 
contributors are methanesulfonate (MSA) and non-sea-salt sulfate, 
which are known to form as secondary aerosol from DMS (Quinn and 
Bates, 2011; Sanchez et al., 2018). A variety of organic compounds also 
contribute to SMA. 

3.1. Marine gas emissions 

DMS, which is produced from dimethylsulfoniopropionate (DMSP) 
(Hatton and Wilson, 2007; Stefels et al., 2007), is the sole source of MSA 
and the marine source of sulfate in the atmosphere. DMS emissions are 
poorly quantified at the global scale, and climatologies of their emis-
sions are heavily dependent on sparse observations (Bock et al., 2021; 
Lana et al., 2011). A recently proposed satellite-based parameterization 
uses Chlorophyll-a, ocean mixed-layer depth, photosynthetically avail-
able radiation, and SST as inputs to an algorithm that predicts ocean 
DMS concentrations (Gali et al., 2018). DMS emissions have been 
increasing at high latitudes as Arctic sea ice recedes, which could mean 
that additional sulfate aerosol serving as CCN would have a dispropor-
tionate impact on global climate by slowing the loss of Arctic ice (Gali 
et al., 2019; Levasseur, 2013). Prediction of future DMS is complicated 
by shifts in phytoplankton community composition (Wang et al., 2018). 

Other ocean-emitted gases that may contribute to SMA include 
isoprene, monoterpenes, iodine, and amines (Shaw et al., 2010a; Fac-
chini et al., 2008a; Gantt et al., 2010; O'Dowd et al., 2002), but there are 
very limited observations of the magnitude of their contributions. The 
limited observations that are available suggest that the contributions of 
these gases to SMA production are minor in comparison to the contri-
butions from DMS. For example, Kim et al., 2017 conducted ship-board 
eddy covariance measurements of the vertical flux of isoprene, mono-
terpenes, and DMS over the North Atlantic during fall, and calculated 
the SMA production rates from DMS to be ten times greater than pro-
duction from either isoprene or monoterpenes. Other ocean-emitted 

Fig. 12. Particle type size distributions for examples from NAAMES1 and 
NAAMES2. Black arrows identify the 0.1% supersaturation activation diameters 
for the Estimated Salt (at 0.13 μm), New Sulfate, and Added Sulfate types. 
Reproduced from (Sanchez et al., 2018). 
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gases, such as acetone, acetaldyhyde, and alkyl nitrates, do not 
contribute significantly to SMA, but have important impacts on OH, 
HOx, and NOx chemical reactions (Novak and Bertram, 2020). More 
details on the ocean production of volatile organic compounds (VOCs) 
are provided by Halsey (this issue). After production, gases in the ocean 
are transferred to the atmosphere by wind-driven, bubble-mediated 
sea-to-air transfer processes, which have been reviewed elsewhere 
(Blomquist et al., 2017; Blomquist et al., 2014; Brumer et al., 2017; 
Garbe et al., 2014; Liss and Slater, 1974; Liss et al., 1993; Yu, 2019; 
Zavarsky and Marandino, 2019). 

3.2. Secondary marine aerosol composition 

The organic components of SMA are typically formed from the 
oxidation and condensation of volatile precursor gases emitted from the 

ocean that contribute to observed sulfate and organic mass in marine 
aerosol (Ceburnis et al., 2008b; Facchini et al., 2008a; Facchini et al., 
2010a; Facchini et al., 2008b; Fu et al., 2013a; Meskhidze and Nenes, 
2006; O'Dowd et al., 2004; Rinaldi et al., 2010a; S. L. Shaw et al., 2010b; 
Turekian et al., 2003). The Quinn and colleagues measurements support 
these observations over a broad range of clean marine conditions 
(Fig. 6b) (Quinn et al., 2000; Quinn et al., 2017b), with non-sea salt 
sulfate providing the largest contribution to <1 μm inorganic mass 
concentration, consistent with studies in a variety of ocean conditions 
(Sanchez et al., 2018; Sanchez et al., 2016; Twohy et al., 2021). Some 
organic mass contributions for <1 μm particles have also been identified 
as SMA based on their carboxylic acid group composition, their non- 
refractory molecular fragments, and their increases with shortwave ra-
diation (Frossard et al., 2014a; Lewis et al., 2021; Saliba et al., 2020). 
Isoprene oxidation products include molecules with carboxylic acid 

Fig. 13. Calculated CCN modal number fraction as a function of supersaturation and latitude. a–f, Data are based on combined, latitudinally binned data from RITS- 
93, RITS-94, ACE-1 Legs 1 and 2, ICEALOT, the second Western Atlantic Climate Study (WACS-2), and NAAMES-1 for the SSA mode with a composition of sea salt 
and OM (a), Aitken mode for a composition of nss SO4

2− (as NH4HSO4) and OM (b), accumulation mode for a composition of nss SO4
2− (as NH4HSO4) and OM (c),SSA 

mode as pure SSA (d), Aitken mode as pure nss SO4
2− (as NH4HSO4) (e) and accumulation mode as pure nss SO4

2− (as NH4HSO4) (f). Reproduced from (Quinn 
et al., 2017b). 
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groups (Claflin et al., 2021; Ziemann and Atkinson, 2012) and may be 
consistent with an ocean source, although field observations may also 
have contributions from continental sources. Amines have been shown 
to have both primary and secondary contributions to marine aerosol 
(Facchini et al., 2008a). 

There is recent evidence suggesting that secondary products have 
larger relative contributions to particle fractions <0.5 μm than to <1 μm 
(Sanchez et al., 2018), which is consistent with expected contributions 
for condensational growth (Maria et al., 2004; Seinfeld and Pandis, 
2016). Volatile gases can also be produced by photosensitized hetero-
geneous reactions at the air-water interface, potentially leading to for-
mation of SMA (Bernard et al., 2016; Tinel et al., 2016). Detailed 
chemical analyses of marine aerosol at coastal sites have shown organic 
and sulfate as SMA contributions, including a study at Amsterdam Island 
that showed that water-soluble organic matter (WSOM) accounted for 
2.8% of fine aerosol mass and was predominantly from MSA. Additional 
WSOM was attributed to oxidation of fatty acid residues from SSA 
(Claeys et al., 2010). 

Open-ocean measurements in the North Atlantic in four seasons 
showed SMA in remote marine aerosol during late spring and summer 
months (Lewis et al., 2021; Saliba et al., 2020; Sanchez et al., 2018), 
despite relatively low measured rates of local production of dimethyl 
sulfide and isoprene (among other VOCs) (Davie-Martin et al., 2020). 
The apparent inconsistency of low DMS with substantial submicron 
sulfate may be attributed to lofting to the free troposphere, where colder 
conditions with lower particle concentrations enhance gas-to-particle 
transfer (Clarke et al., 1999; Clarke et al., 2013; Raes, 1995; Sanchez 

Table 4 
Selected references on DMS as an SMA source (from Sanchez et al., 2018).  

Relevant Findings Ref. Location Observations or 
Model 

Relationship between DMS 
and CCN    

DMS-derived sulfate aerosol 
account for most of the CCN 
in the remote marine 
boundary layer. 

(Charlson 
et al., 1987b) 

Global Model plus 
Observations 

MSA and CCN vary seasonally 
and have a non-linear 
relationship. 

(Ayers and 
Gras, 1991) 

Cape Grim Observations 

DMS and CCN in boundary 
layer are strongly (non- 
linearly) correlated. 

(Hegg et al., 
1991) 

NE Pacific Observations 

CCN and DMS are correlated 
but relationship can be 
nonlinear because of SO2 

sinks. 

(Russell et al., 
1994) 

N/A Model 

CN correlates strongly with 
atmospheric DMS and DMS 
flux but weakly with CCN. 

(Andreae et al., 
1995) 

S. Atlantic Observations 

Modeled CN and CCN 
correlate with DMS flux; 
free tropospheric 
entrainment affects CN and 
CCN concentration in the 
marine boundary layer. 

(Raes, 1995) N/A Model  

New Particle Formation 
from DMS Products    

The number of particles 
formed by homogeneous 
nucleation depends on the 
preexisting aerosol 
concentration. 

(Warren and 
Seinfeld, 1985) 

N/A Model 

Particle number 
concentration increases 
rapidly after a decrease in 
particle surface area and 
increase in SO2 

concentration. 

(Covert et al., 
1992) 

NE Pacific Observations 

After precipitation, marine 
boundary layer aerosol 
particles can be replenished 
from new particles formed 
by nucleation if DMS 
concentrations are high. 

(Pirjola et al., 
2000) 

N/A Model  

Evidence of New Particle 
Formation in the Free 
Troposphere    

Vertical profiles of Aitken 
mode aerosol 
concentrations showed 
maximum values just above 
cloud tops. 

(Hegg et al., 
1990) 

NW and NE 
Pacific 

Observations 

Aerosol nucleation is 
observed above cloud top 
and downwind of cloud 
outflows. 

(Perry and 
Hobbs, 1994) 

N. Pacific Observations 

CN and CCN were replenished 
on time scales of 2–4 days 
with transported nuclei 
from the free troposphere 
after precipitation 
scavenging. 

(Clarke et al., 
1996) 

Christmas 
Island 

Observations 

Variability in marine 
boundary layer aerosol 
concentration is closely 
linked to changes in vertical 
transport. 

(Raes et al., 
1997) 

NE Atlantic Observations 

Nucleation is observed in the 
free troposphere but not the 
marine boundary layer, and 
it is observed more 

(Clarke et al., 
1998) 

Southern 
Ocean 

Observations  

Table 4 (continued ) 

Relevant Findings Ref. Location Observations or 
Model 

frequently for particle 
surface area <5–10 μm2 

cm− 3. 
CN concentration in the 

marine boundary layer is 
controlled by the rate of 
entrainment from the free 
troposphere in most 
conditions. 

(Katoshevski 
et al., 1999) 

N/A Model 

Observed growth rates of new 
particles in the free 
troposphere cannot be 
explained by SO2 products 
and water vapor so other 
components must 
contribute to condensation. 

(Reus et al., 
2000) 

NE Atlantic Model/ 
Observations 

New sulfate particles do not 
form in the marine 
boundary layer but instead 
in the free troposphere and 
then are entrained 
downward. 

(Kazil et al., 
2006) 

Global Model 

Entrainment of nucleated 
sulfate particles from the 
free troposphere account 
for 43–65% of CCN, but 
only 7–20% in the winter; 
long range transport of 
marine CCN results in a 
time lag between CCN and 
DMS concentrations. 

(Korhonen 
et al., 2008) 

Southern 
Ocean 

Model 

45% of marine boundary 
layer CCN (at 0.2%) are 
from nucleation that 
occurred in the free 
troposphere. 

(Merikanto 
et al., 2009) 

Global Model 

Sulfate particles from DMS 
mixed up to the free 
troposphere are a source of 
marine boundary layer 
CCN. 

(Clarke et al., 
2013) 

Tropical 
Pacific 

Observations  
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et al., 2018). The SMA signature of carboxylic acid groups by FTIR was 
clearly present in May–June and September, but almost entirely absent 
in November and March (Lewis et al., 2021). This seasonal dependence 
is generally consistent with the chlorophyll and sunlight-based emission 
parameterization used in global models (Myriokefalitakis et al., 2010). 
Observed carboxylic acid group mass of 10% of marine organic mass 
implies a larger vapor-phase precursor concentration than was 
explained by measured DMS or isoprene (Saliba et al., 2020). Carboxylic 
acid groups are a common component of SMA from isoprene and 
monoterpenes (Claflin et al., 2021; Lewis et al., 2021), but the lack of 
simultaneous precursor measurements precludes a specific source 
attribution. 

3.3. Secondary marine aerosol as CCN 

SMA can add new CCN either by growing particles from sizes too 
small to be CCN (generally <0.1 μm for 0.1% supersaturation) to sizes 
large enough to be CCN or by adding new particles through homoge-
neous nucleation. For example, SMA could provide crucial increases in 
particle size that allow SSA and other particles emitted at sizes <0.1 μm 
dry diameter to grow to sizes large enough to serve as CCN at super-
saturations of <0.2% (Charlson et al., 1987a; Sanchez et al., 2018). 
While there is little evidence for new particle formation occurring in the 
marine boundary layer given the competing sink of aerosol surface area 
(Quinn and Bates, 2011), exchange between the free troposphere and 
the boundary layer may provide transported or nucleated particles that 
can be grown into CCN by SMA (Zheng et al., 2018; Zheng et al., 2021). 
The magnitude of this contribution to CCN varies with the condensable 
gases, ambient temperature and relative humidity, and the availability 
of other sinks. For example, in the North Atlantic, the seasonal differ-
ence in the role of SMA as CCN varies from sulfate contributing 34% of 
CCN at 0.1% supersaturation in windy fall compared to 64% in the 
sunny late spring, both to wind-driven differences in the SSA produced 
and differences in the DMS emitted and oxidized (Sanchez et al., 2018). 

For cloud supersaturations >0.1%, the contribution of SMA to CCN 
number concentration would be expected to increase given the typically 
high concentrations of particles <1 μm. 

4. Regional ocean differences and other controlling factors 

Parameterizations of SSA rely on empirical measurements rather 
than a theoretical formulation, since even idealized bubble bursting 
process simulations at micrometer scales have not quantified particle 
production (Bird et al., 2010; Lhuissier and Villermaux, 2012; Veron 
et al., 2012). Ocean conditions include diverse processes at many scales 
that interact with small scale processes. In addition, ocean ecosystems 
differ across ocean regions (Burrows et al., 2018; Burrows et al., 2022a; 
Burrows et al., 2014), with different organic components of sea spray 
contributing compounds from different ecosystem populations (Fig. 14). 
There is considerable evidence that SSA and SMA have some similar 
properties globally, including the general similarity of the mass size 
distributions of sea salt and non-sea salt sulfate in regions as diverse as 
the North Atlantic and the Southern Ocean (Fig. 6a). However, in the 
absence of a priori (bottom up) predictions of either SSA or SMA, it is 
reasonable to consider that differences in regions, seasons, and other 
environmental conditions influence both the concentrations of aerosol 
sources and their sizes. 

Future climate may also bring significant changes in SSA associated 
with changes in surface wind speeds. SSA emissions will change as 
surface wind speeds are either increased or decreased by a warming 
climate and a recovering ozone layer (Gettelman et al., 2016; Korhonen 
et al., 2010). In addition, the retreat of sea ice and ice shelves leaves 
more ocean surface exposed and increases the emissions of SSA, 
although the net climate effects of such an increase in emissions are 
uncertain (Browse et al., 2014; Struthers et al., 2011). 

Fig. 14. Submicron SSA dry mass fraction from each compound class for February from the Organic Compounds from Ecosystems to Aerosols: Natural Films and 
Interfaces via Langmuir Molecular Surfactants (OCEANFILMS) model BASE case. Fractions of processed and humic classes (not shown) are negligible. Reproduced 
from (Burrows et al., 2014). 
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4.1. Open-ocean, coastal, and polar regions of marine aerosol 

Marine regions include three distinct types of ocean areas, namely 
open-ocean, coastal, and polar regions. Open-ocean areas are expected 
to be characterized by large and relatively homogeneous expanses of 
wave breaking, with consistent near-surface wind speeds and tempera-
tures. Coastal regions are generally expected to be influenced by open- 
ocean conditions upwind, with only recent production of SSA and 
SMA affected by shore-influenced wave breaking (Clarke et al., 2003). 
Polar regions may have a mix of breaking waves as well as processes 
associated with sea ice and open‑lead formation, below-ice ecosystems, 
and resuspension of deposited SSA and SMA as blowing snow or frost 
flowers (Abbatt et al., 2019; Chang et al., 2011; Frey et al., 2020). 

Open-ocean measurements are very limited given the deployment 
costs, but such measurements are most likely to represent sea spray 
emissions over the largest fraction of the area of global oceans. No direct 
flux measurements are available for the open ocean, although proxies 
from bubbled seawater have been collected underway on the open ocean 
to determine fluxes (Keene et al., 2017). The chemical composition 
measurements of Quinn and colleagues (Fig. 6) provide a consistent >1 
μm SSA size distribution signature across many regions, with a mass 
concentration peak at ~3 μm dry diameter. Their measurements have 
also characterized the role of SMA in the open ocean, typically showing 
an NH4

+/SO4
2− molar ratio of 1, consistent with ammonium bisulfate. 

Substantial differences between open-ocean SSA (interpreted as 
aerosol measured at 20 m during onshore winds) and near-shore SSA 
(measured as the difference between 5 m and 20 m ASL) were observed 
at Hawaii. Their observations showed a majority of particles at 5 m ASL 
were smaller than 0.1 μm dry diameter (Clarke et al., 2003), similar to 
the inferred fluxes at a North Atlantic coastal site at Mace Head (Xu 
et al., 2022). There is some support for a small particle mode similar to 
that observed in coastal studies in open-ocean observations (<0.18 μm 
bin, Fig. 6a) and laboratory studies, but this SSA mode could also be 
generated by coastal dynamics since open-ocean studies do not show a 
clear wind speed dependence (Fig. 6d). 

SSA in polar regions has a strong seasonal variation with sea ice 
coverage, because sea ice reduces the area of breaking waves in winter 
when the wind speeds are expected to be highest (Liu et al., 2018; P. M. 
Shaw et al., 2010b). Polar regions are very different between the north 
and the south, with Antarctic measurements lacking the springtime haze 
events that confound measurements of SSA and SMA in the Arctic (Lubin 
et al., 2020). The unique biogeochemistry associated with seasonal sea 
ice could also result in differences in SSA and SMA to a greater extent 
than at the milder lower latitudes. 

4.2. Temperature dependence 

Wave breaking and the subsequent bursting of bubbles is controlled 
by the fluid motion of seawater at the ocean surface (Veron, 2015). The 
sea surface temperature changes the density, viscosity, and surface 
tension of the fluid, of which the viscosity is likely the most sensitive 
parameter for the film rupture process (Lhuissier and Villermaux, 2012). 
Laboratory experiments demonstrated the role that temperature played 
in changing the size distribution of bubble-generated particles, showing 
a significant increase in flux with temperature (Martensson et al., 2003). 
Incorporating this effect in a global model showed that this increase 
improved the model correspondence to open-ocean SSA measurements 
(Jaegle et al., 2011). Further evidence of the effect of SST on SSA is 
provided by four seasons of open-ocean measurements in the North 
Atlantic, where the mean size of the SSA mode varied with SST (Liu 
et al., 2021; Saliba et al., 2019). 

4.3. Whitecap dependence 

Persistent bubbles on the ocean surface appear as “whitecaps” that 
can affect the persistence and bursting of bubbles (Andreas and 

Monahan, 2000; Monahan et al., 1983). Whitecaps are difficult to 
replicate in laboratory measurements, although foam persistence has 
been noted to change SSA production (Keene et al., 2017; Stokes et al., 
2016; Stokes et al., 2013). Open-ocean observations of whitecaps have 
also been carried out (Callaghan et al., 2008), but correlations to SSA are 
difficult because of the mismatch in the spatial scale of the observed 
whitecaps and the fetch of the SSA produced (Hoppel et al., 2002). 
Retrievals of whitecaps from satellite may improve parameterizations 
for SSA (Albert et al., 2016; Anguelova and Webster, 2006; Salisbury 
et al., 2013). 

4.4. Sea surface microlayer 

Rudimentary separation of a lighter, more surface-active layer in the 
top millimeter of the ocean from the seawater below has been accom-
plished with rotating drums and simple mesh screens (Miller et al., 
2015). These methods are not able to quantify the thickness of the layer 
collected, but the composition and properties of the material have been 
shown to be substantially different from the seawater below (Aller et al., 
2017; Crocker et al., 2022; Ickes et al., 2020; Irish et al., 2017; Lewis 
et al., 2022; Mungall et al., 2017; Wilson et al., 2015). The location of 
this layer at the sea surface means that it is expected to affect the bubble 
formation and bursting processes, unless sufficiently disturbed by wave- 
breaking processes. Modeling of bubble drainage shows an important 
role for contamination of the seawater surface (Poulain et al., 2018). 
Laboratory experiments have included proxies for this layer, from sim-
ple surfactants to complex biological mixtures (Modini et al., 2013; 
Prather et al., 2013b). 

Comparison of the organic functional group signature in the FTIR 
alcohol group absorbance of the sea surface microlayer reveals a het-
erogeneity from day to day that is consistent with other microlayer 
measurements and with the atmospheric aerosol composition measured 
in clean conditions (Lewis et al., 2022). Similarities in composition of 
<1 μm marine aerosol and the sea surface microlayer have included the 
presence of transparent exopolymer particles (TEP) and similar moieties 
from biological sources (Facchini et al., 2008a). The variability in the 
shape and peak locations of the alcohol group absorbance in the 
microlayer and aerosol particles supports a role for the microlayer in 
SSA formation, although the quantitative ratios of alcohol to alkane and 
amine group mass concentrations are also generally consistent with the 
subsurface water composition (Lewis et al., 2022). Combined these re-
sults indicate that both subsurface seawater and sea surface microlayers 
contribute to SSA formation, consistent with general expectations. 

4.5. Biological diversity 

Since ocean ecosystems produce organic compounds that contribute 
to subsurface and sea surface composition, SSA and SMA will be affected 
by regional and seasonal differences in those ecosystems. Ocean eco-
systems in the “polar”, “westerlies” (mid-latitude),”trades” (equatorial) 
and “coastal” biomes are controlled by different processes and exhibit 
different seasonality (Longhurst, 1995). The dominant phytoplankton 
functional groups and their seasonal cycles also vary between ocean 
biomes (Fig. 15)(Alvain et al., 2008). In particular, the Phaeocystis 
group, which is a dominant group only at high latitudes, has long been 
recognized as an important contributor to atmospheric DMS emissions 
(Belviso et al., 2004; Liss et al., 1994). 

Several studies have supported the connection between ecosystems 
and marine aerosol by showing correlations between SSA and Chloro-
phyll (O'Dowd et al., 2004), but limited observations from open-ocean 
studies have shown no dependence on daily time scales and only a 
weak dependence on seasonal time scales (Bates et al., 2020; Saliba 
et al., 2020). A metric more specific to overall biological productivity is 
net primary productivity (NPP), which has also been shown to explain 
some of the variability in SSA (Lewis et al., 2022; Saliba et al., 2019). 
Observation-based efforts to link SMA to either Chl or NPP have not 
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been successful, perhaps due to the time lag and complexity of those 
processes (Sanchez et al., 2021b). However, bottom-up modeling of 
ocean ecosystems has shown that the seasonal cycle in the North Atlantic 
for ocean biological effects on sea spray may have a narrow maximum 
that occurs in July (Fig. 16) rather than during the peak in chlorophyll 
intensity that was sampled in May (Burrows et al., 2022a) (Burrows 
et al., 2022b). More complete sampling of the seasonal dependence, as 
well as the latitude dependence, of open-ocean measurements of SSA 
would be required to observe the seasonal cycles predicted by models 
and observed at coastal sites (Rinaldi et al., 2013; Sciare et al., 2009). 

5. SSA and SMA carbon budget 

The best model-based estimates for the global emissions of primary 
marine organic mass (OM) span the range of 6.9–76 Tg/yr for <1 μm 
emissions and 7.5—58 Tg/yr for >1 μm emissions (using an organic 
mass to organic carbon ratio of 3 to convert where appropriate) (Gantt 
et al., 2011; Ito and Kawamiya, 2010; Long et al., 2011; Myriokefalitakis 
et al., 2010; Spracklen et al., 2008; Vignati et al., 2010; Westervelt et al., 
2012), with earlier estimates reviewed previously (Tsigaridis et al., 
2013). These studies used both different emissions parameterizations 
and different model systems, which may impact the simulated atmo-
spheric residence time of SSA and SMA. As a simple comparison, we can 
use the open-ocean measurements from Quinn and colleagues (Fig. 6) to 

see that >90% of <10 μm sea salt mass concentration is coarse (>1 μm), 
with the remaining <1 μm contribution ranging from 3% to 10%. The 
average ambient organic fraction of SSA <1 μm is 20% OM or 7% OC. 
Using the global SSA estimate of 5000 Tg/yr, organic components ac-
count for 7% of <1 μm SSA at 105 Tg/yr (35 TgC/yr), which is within 
the range from the models noted above for the combined <1 μm and > 1 
μm emissions of 134 Tg/yr. If >1 μm organic carbon measurements have 
shown negligible contributions to SSA mass as has been typically re-
ported (Keene et al., 2017), then the <1 μm organic mass flux estimated 
here is within the model-estimated range. 

Secondary aerosol formed from DMS oxidation products is an 
important aerosol source in remote marine regions (Ayers and Gras, 
1991; Charlson et al., 1992). The recent multi-model estimate of 
contemporary global ocean DMS emissions is 16–24 TgS/yr, even 
though the observation-derived range is 16–28 TgS/yr. Global sources of 
SOA from oceanic precursor gases are thought to be substantially 
smaller than primary organic. This is especially true of sources other 
than DMS and its oxidation products, which are already included in 
models. According to one set of estimates, marine volatile organic car-
bon emissions contribute <2 TgC/yr to organic SMA globally, with DMS 
oxidation contributing about 0.6 TgC/yr (Quinn et al., 2015). Combined 
amine compounds contribute approximately 0.6 TgC/yr and isoprene 
and monoterpenes up to 1 TgC/yr (Quinn et al., 2015). 

Oxidation products of marine isoprene may contribute a substantial 

Fig. 15. Monthly climatology (January and 
June 1998–2006) of the dominant phyto-
plankton group as retrieved by the spectral- 
based method for identifying phytoplankton 
from anomalies in satellite retrievals of 
ocean colour known as PHYSAT. The colors 
indicate diatoms in red, nanoeucaryotes in 
blue, Synechococcus in yellow, Pro-
chlorococcus in green, and phaeocystis-like 
in light blue. Reproduced from (Alvain 
et al., 2008). (For interpretation of the ref-
erences to colour in this figure legend, the 
reader is referred to the web version of this 

article.)   

Fig. 16. OCEANFILMS-predicted seasonal cycle of biological enhancement in the emission flux (a; ratio of predicted marine organic aerosol plus sea salt flux to flux 
of pure sea salt) and the organic mass fraction (b) of sea spray particles with diameter < 1 μm, for the region of the NAAMES field campaign. The NAAMES campaign 
consisted of four cruises in different seasons, with most scientific sampling occurring close to 40◦W and between approximately 40◦N and 50◦N (Behrenfeld et al., 
2019)(Behrenfeld et al., 2019). All model results are monthly mean output at 40◦W and at the latitudes indicated in the legend. Vertical lines indicate the months 
during which each variable was measured by NAAMES. Reproduced from (Burrows et al., 2022a). 
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fraction (over 30%) of organic aerosol mass over oceans in the tropics, 
where the SSA source is small due to low wind speeds (Gantt et al., 
2009). The SMA contribution to marine organic carbon at mid- and high 
latitudes, and globally, was minor, <0.2% of global marine organic 
aerosol mass (Gantt et al., 2009). SMA from marine hydrocarbon pre-
cursors was found to be negligible compared to the estimated marine <1 
μm organic SMA source of about 5 Tg/yr, but this flux consisted pri-
marily of DMS oxidation products (78%), with most of the remaining 
mass originating from dialkyl amine salts (21%) (Myriokefalitakis et al., 
2010). 

These fluxes of 35 TgC/yr as SSA and 1.5 TgC/yr as SMA to the at-
mosphere are expected to have a lifetime of 5–7 days in the marine 
boundary layer, after which time they will generally be deposited to the 
surface with a small fraction transported upwards to the free tropo-
sphere. A general estimate based on the ocean-covered area of the Earth 
would be that >70% would be deposited back to the ocean and the 
remaining fraction would be deposited to land. The resulting flux from 
ocean to land may be about 30% of 37 TgC/yr, or 11 TgC/yr. 

6. Open questions 

SSA plays an important role in light scattering in Earth's atmosphere, 
contributing approximately 5000 Tg/yr of mostly >1 μm particle mass. 
In situ measurements and satellite retrievals show a clear wind speed 
dependence of these particles, providing reasonable constraints for 
global models. The uncertainties in satellite retrievals of SSA-specific 
AOD prevents global inventories from including accurate size distribu-
tions, so in situ measurements of SSA provide important constraints. 
Consequently whether the SSA coarse mode is correctly represented by 
satellite AOD retrievals and wind speed parameterizations merits addi-
tional evaluation (Schutgens et al., 2021), and observationally- 
constrained global modeling simulations could reduce the uncertainty 
associated with this question. Additional measurements of >1 μm mass 
and number size distributions would be essential for improving con-
straints on SSA direct and indirect radiative effects. 

Open-ocean measurements of SSA and SMA are limited in avail-
ability and in specificity of either number concentration or chemical 
composition, especially for particles <0.5 μm and < 0.1 μm dry diam-
eter. These open-ocean reports include sea salt particle modes <0.5 μm 
(Fig. 6b) similar to coastal and laboratory reports. However, the open- 
ocean observations of SSA <0.5 μm do not show a clear dependence 
on wind speed and vary substantially with region and time (Fig. 6d). 
These limitations and the contrasting observations from open-ocean 
studies mean that there remain several open questions about the 
magnitude and contribution of <0.5 μm and < 0.1 μm particles, as well 
as very little information on the extent to which wind speed or other 
factors control their production. Specifically, there are no direct mea-
surements of how many CCN are SSA or SMA, so it is an open question 
whether they contribute 10%–30% of CCN or much higher numbers 
globally. Open-ocean observations with simultaneous measurements of 
size-resolved composition and hygroscopic and volatility properties 
could help to close the gap on these questions. More complete sampling 
of the open-ocean seasonal cycle could also address the extent to which 
ocean biology impacts SSA composition. Combining satellite retrievals 
of cloud drop number concentrations (Painemal et al., 2020; Painemal 
et al., 2021) with AOD-based fine particle mass concentrations (Sawa-
mura et al., 2017) may also make it possible to continuously retrieve 
marine CCN, or possibly even SMA and SSA, number concentrations 
from remote regions with continued global coverage. 

While the mechanism and size dependence for producing most SSA 
>1 μm particles is expected to be jet drops at 10% of the bubble radius, 
particles smaller than 0.5 μm are produced from film drops that extend 
over a wide range of sizes for a given bubble size. This process is also 
likely affected by regional and seasonal conditions, with an important 
open question relating to the mechanistic role of the sea surface 
microlayer. Further work on theoretical approaches and numerical 

simulations is needed to understand these processes, with supporting 
observations from atmospheric and ocean conditions. 
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